首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reports changes in ion transport and energy metabolism of plant cells during short- and long-term expositions, resp., to antibiotic nystatin, which is known to specifically bind with plasma membrane sterols to form channels. The excised roots of 5 days old wheat seedlings were used as a model system in this research. It has been shown that treatment of excised roots with nystatin leads to activation of energy metabolism expressed as an increase of respiration and heat production by root cells. Furthermore, in the presence of nystatin increased pH of incubation medium, plasma membrane depolarization and a significant loss of potassium ions were observed. Nystatin-induced stimulation of respiration was prevented by malonate, an inhibitor of succinate dehydrogenase, electron acceptor dichlorophenolindophenol, and AgNO3, an inhibitor of H(+)-ATPase. Based on the data obtained it can be suggested that nystatin-induced stimulation of respiration is related to electron transport activation via mitochondrial respiratory chain, and is connected with activation of plasmalemma proton pump. Moreover, nystatin-induced increase of oxygen consumption was prevented by cerulenin, an inhibitor of fatty acid and sterol synthesis. This indicates that additional sterols and phospholipids may be synthesized in root cells to "heal" nystatin-caused damage of plasma membrane. A supposed chain of events of cell response to nystatin action may by as following: formation of nystatin channels-influx of protons--depolarization of plasmalemma-efflux of potassium ions-disturbance of ion homeostasis--activation of H(+)-ATPase work-increase in energy "requests" for H(+)-ATPase function--increase in the rate of oxygen consumption and heat production. The increased energy production under the action of nystatin, may provide the work of proton pump and synthesis of sterols and phospholipids, which are necessary for membrane regeneration.  相似文献   

2.
Sucrose and fructan metabolism in wheat roots at chilling temperatures   总被引:3,自引:0,他引:3  
Sucrose and fructan metabolism were studied in wheat ( Triticuin aotiirum L. cv. Tribal 800) roots during a period at chilling temperature. Enzyme activities related to fructan and sucrose metabolism were measured. Sucrose-sucrose fructosyl transfer-ase (EC 2.4.1.99) activity increased more than 25-fold when plants were cooled to 4°C. Sucrose synthase (EC 2.4.1.13) and sucrose-phosphate synthase (EC 2.4.1.14) activities also increased, but low temperatures had no significant effect on invertaso (EC 3.2.1.26) or on fructan hydrolase (EC 3.2.1.26) activities. The accumulation pattern of fructan in roots was different to that in leaves. In roots chilling stimulated the synthesis of fructans of high degree of polymerization.  相似文献   

3.
We report a novel approach for the attachment of DNA fragments to the surface of live cells. By using fluorescence microscopy and flow cytometry we demonstrated that our synthetic conjugates of fatty acid with oligonucleotides can be incorporated in plasma membrane and then hybridized with complementary sequences at the cell surface. Method permits to control amount of immobilized DNA on the cell surface. All procedures can be completed within minutes and do not alter cell viability. Using this approach we tethered floating myeloid HL-60 cells to adherent A431 epitheliocytes in a sequence specific fashion. Thus, this method allows rapid and simple DNA multicoding of the cell surface and, therefore, opens new opportunities in manipulating with cell–cell interactions.  相似文献   

4.
The mitogenic activity of wheat germ agglutinin (WGA) has been studied in roots of 4-day-old wheat seedlings. WGA had a more pronounced stimulating effect on cell division than the known mitogens concanavalin A and phytohemagglutinin whereas gliadin had no effect. Treatment of wheat seedling roots with exogenous WGA led to the accumulation of indoleacetic acid and cytokinins, hormones that play an important role in the activation of plant cell growth. The data on the combined effect of 24-epibrassinolide and WGA on cell division and accumulation of phytohormones in seedling roots support a possible link between the endogenous WGA level and hormonal regulation of cell division in the root meristem of wheat plants.  相似文献   

5.
6.
7.
8.
A hypoxic pre-treatment (HPT) can improve the anoxic survival of flooding sensitive plants. Here, we tested whether a 4-d HPT of wheat plants (Triticum aestivum L.) would improve their anoxic resistance, and if so, why. We found that the metabolic adjustment during prolonged HPT involved an increased lactate excretion rate, the up-regulation of glycolytic and fermentative enzymes as well as the accumulation of various sugars. Therefore, HPT wheat roots could sustain a 3 times higher ethanolic fermentation rate during an anoxic period compared to non-pre-treated (NHPT) roots. Nevertheless, the enhanced fermentation rate provided temporary relief to the energy crisis only, and both NHPT and HPT plants died after 5d of anoxia in illumination. Comparison of different low oxygen incubation systems using excised roots or roots of intact plants revealed striking differences. The benefits of intact shoots, oxygen transport as well as additional sugar supply enabled a more stable energy supply of anoxia-treated NHPT and HPT roots. However, the height of the fermentation rate was correlated with a high ATP content during dark anoxic incubation, but not in illumination.  相似文献   

9.
The effect of phosphate supply during the first 4 weeks of the life cycle of wheat ( Triticum aestivum L. cv. Martonvásári-8) was investigated by following growth of seedlings, P levels in roots and shoots, changes of soluble phosphatases in roots and alteration of Ca2+ - and Mg2+-ATPase activity in the microsomal fraction. Plants were grown in complete nutrient solution supplemented with different levels of phosphate. Maximal growth rate was attained at 0.2 m M phosphate. The total P level in plants increased with increasing phosphate concentration in the growth solution, however, it decreased with age. Microsomal ATPase activity in 14-day-old plants increased with phosphorus deficiency. Using phosphocellulose column chromatography, a phosphatase (EC 3.1.3.2) induced by phosphorus deficiency was purified and partially characterized from the 30 000 g supernatant from roots of 14- to 30-day-old wheat plants. Na-pyrophosphate, p -nitrophenylphosphate, ATP, ADP, AMP, O-phosphoryl- l -serine and glucose-6-phosphate were all substrates for the enzyme. Its native molecular weight was 42 kDa as determined by Sephadex G-200 column chromatography. Readdition of phosphate to the growth solution resulted in a gradual decrease of the phosphatase activity, probably due to repression of its synthesis. We hypothesize that the extra phosphatase may participate in the adaptation mechanism under phosphorus-deficient conditions.  相似文献   

10.
11.
移植排斥是生物学中的重大问题,其理论涉及众多生物学科,包括免疫学、生物化学、分子生物学、生理学、细胞生物学、实验血液学等;其实践涉及同种和异种细胞、组织、器官移植,关系到肿瘤、糖尿病、急性放射病、免疫缺陷症、器官衰竭等数以百万计患者的治疗和健康。使用化学材料聚乙二醇、海藻酸钠、壳聚糖、多聚赖氨酸等,发挥化学、物理、生物学科交叉的优势,在移植物细胞表面进行物理化学反应,修饰和改造细胞表面抗原分子,有望为克服移植排斥反应开辟新的途径。  相似文献   

12.
Effects of 20 nM wheat germ agglutinin (WGA) on relative growth rate, mitotic index (MI) and the cell area in the root extension zone were investigated in seedling of Triticum aestivum L. under the influence of 2% NaCl. It was elucidated that pretreatment of wheat seedling with WGA prevented a salinity induced inhibition of root cell growth, and accelerated the restoration of cell growth after stress removal. The protective WGA effect on root cell growth may be due, presumably, to reorganization of phytohormone balance caused by WGA treatment, which could lead to accumulation of LAA and decrease in the ABA level.  相似文献   

13.
14.
Diapause in overwintering adult female Culex pipiens mosquitoes plays an important role in the transmission of West Nile and other encephalitis-inducing flaviviruses. To investigate the dynamic metabolic processes that control Cx. pipiens diapause, we used radioactive tracer techniques with [14C]-glucose to investigate the metabolic fate and flux of glucose in adult mosquitoes reared under diapause (18 °C, short day) and non-diapause (27 °C, long day) conditions. We found that by 72 h post-14C-labeling of 1-day-old mosquitoes, the diapause-destined mosquitoes had converted 46% more 14C-labled glucose into 14C-labled lipid than mosquitoes reared under non-diapausing conditions. When 5-day-old mosquitoes were fed [14C]-glucose, and then switched to water only, the non-diapausing mosquitoes oxidized nearly three times more 14C-labled glycogen and lipid by day 7 than diapausing-mosquitoes. This increased energy expenditure in non-diapausing mosquitoes is most likely due to temperature- and light-dependent increases in the basal metabolic rate. Amongst the diapausing-mosquitoes we analyzed over a subsequent 7-week period, we found that the amount of 14C-labeled glycogen decreased steadily for the first month of diapause, whereas, 14C-labeled-lipid levels were not significantly decreased until after day 35 of diapause, indicating that flux through glycogenolysis is higher than lipolysis during the first month of diapause. Lastly, our analysis revealed that 38% of the initial 14C-labled lipid that was synthesized during the adult pre-diapause phase was still present following the first gonotrophic cycle. About 33% of this remaining 14C-labeled lipid was localized to the newly developed eggs, suggesting that lipid sparing processes during a minimal 7-week long diapause may enhance egg production.  相似文献   

15.
The ATP pool of Streptococcus cremoris in a lactose-limited chemostat depletes rapidly when lactose is consumed. The decrease of the intracellular ATP concentration parallels the dissipation of the electrochemical proton gradient. The adenylate energy charge of growing cells is 0.8 but drops rapidly to 0.2 when the cells enter the starvation phase.One of the early events of lactose starvation is a rapid increase of the pools of phosphoenolpyruvate and inorganic phosphate. The accumulation of phosphoenolpyruvate is temporarily and levels off at a much lower value than in growing cells; the accumulation of phosphate is of a more permanent nature. Despite the low PEP concentration starved cells are, after 24 h of incubation in the absence of lactose, still able to take up lactose, to synthesize ATP and to generate quickly an electrochemical proton gradient.Abbreviations PEP phosphoenolpyruvate Dedicated to Prof. Dr. Gerhart Drews on the occasion of his 60th birthday  相似文献   

16.
Phytotoxicity of aluminum is characterized by a rapid inhibition of root elongation at micromolar concentrations, however, the mechanisms primarily responsible for this response are not well understood. We investigated the effect of Al on the viscosity and elasticity parameters of root cell wall by a creep-extension analysis in two cultivars of wheat (Triticum aestivum L.) differing in Al resistance. The root elongation and both viscous and elastic extensibility of cell wall of the root apices were hardly affected by the exposure to 10 microM Al in an Al-resistant cultivar, Atlas 66. However, similar exposure rapidly inhibited root elongation in an Al-sensitive cultivar, Scout 66 and this was associated with a time-dependent accumulation of Al in the root tissues with more than 77% residing in the cell wall. Al caused a significant decrease in both the viscous and elastic extensibility of cell wall of the root apices of Scout 66. The "break load" of the root apex of Scout 66 was also decreased by Al. However, neither the viscosity nor elasticity of the cell wall was affected by in vitro Al treatment. Furthermore, pre-treatment of seedlings with Al in conditions where root elongation was slow (i.e. low temperature) did not affect the subsequent elongation of roots in a 0 Al treatment at room temperature. These results suggest that the Al-dependent changes in the cell wall viscosity and elasticity are involved in the inhibition of root growth. Furthermore, for Al to reduce cell wall extensibility it must interact with the cell walls of actively elongating cells.  相似文献   

17.
Chemical modifications of components of the bacterial cell envelope can enhance resistance to antimicrobial agents. Why then are such modifications produced only under specific conditions? Here, we address this question by examining the role of regulated variations in O‐antigen length in the lipopolysaccharide (LPS), a glycolipid that forms most of the outer leaflet of the outer membrane in Gram‐negative bacteria. We determined that activation of the PmrA/PmrB two‐component system, which is the major regulator of LPS alterations in Salmonella enterica serovar Typhimurium, impaired growth of Salmonella in bile. This growth defect required the PmrA‐activated gene wzzst, which encodes the protein that determines long O‐antigen chain length and confers resistance to complement‐mediated killing. By contrast, this growth defect did not require the wzzfepE gene, which controls production of very long O‐antigen, or other PmrA‐activated genes that mediate modifications of lipid A or core regions of the LPS. Additionally, we establish that long O‐antigen inhibits growth in bile only in the presence of enterobacterial common antigen, an outer‐membrane glycolipid that contributes to bile resistance. Our results suggest that Salmonella regulates the proportion of long O‐antigen in its LPS to respond to the different conditions it faces during infection.  相似文献   

18.
Several genes including oxalate oxidase (Oxo) are up-regulated in Triticum aestivum L. root tips exposed to Al. To better understand the function of Oxo during Al exposure, the protein level and enzyme activity were measured. The data indicate that both Oxo protein and activity are increased proportionally to the level of root growth inhibition (RGI). A high level of Oxo expression may result in excess H(2)O(2) production which could become toxic and induce cell death. However, the timing of H(2)O(2) production (observed after 24 h) indicates that it cannot be the primary cause of cell death first observed after 8 h. Moreover, at Al concentrations resulting in 50% RGI, we did not observe any cell death in the sensitive cultivar while a punctated pattern of death involving small groups of cells was found in the tolerant cultivar. This pattern was maintained for several days in the tolerant cultivar, suggesting the involvement of a cell death mechanism aimed at replacing epidermal cells intoxicated with Al while root growth is maintained. The accelerated epidermal cell turnover may represent a new detoxification mechanism helping to protect deeper cell layers of the meristematic and elongation zone essential for root growth.  相似文献   

19.
Norepinephrine metabolism and nuclear RNA (nRNA) synthesis in the rat brain are found to be conjugated. Under the effect of preparations inducing a disturbance in the norepinephrine (sodium diethyldithiocarbamate and reserpine) its content in the brain tissue lowers and the nRNA synthesis intensity decreases. Accumulation on total resources of norepinephrine in the brain under the effect of ipraside or its synaptic form (melipramine, Lu-5) intensifies the nRNA synthesis.  相似文献   

20.
Fester T  Kiess M  Strack D 《Mycorrhiza》2002,12(4):219-222
A small protein, designated Myk15, was found to be strongly induced in wheat ( Triticum aestivum) roots colonized by the arbuscular mycorrhizal fungus Glomus intraradices. This protein, which is most abundant in root fractions characterized by strong mycorrhizal colonization, has been characterized using two-dimensional polyacrylamide gel electrophoresis and microsequencing. It has an apparent molecular mass of 15 kDa and an isoelectric point of 4.5. The N-terminal sequence has high similarity to a peptide sequence deduced from an expressed sequence tag (EST) clone derived from Medicago truncatula roots colonized by G. intraradices. This EST clone is predicted to code for a protein with a similar size and isoelectric point as Myk15. The N-terminus of the deduced M. truncatula protein contains a highly hydrophobic stretch of 24 amino acid residues preceding the region with high similarity to the Myk15 N-terminus. This hydrophobic stretch is predicted to form a transmembrane alpha-helix and may correspond to a cleavable targeting domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号