首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toluene diisocyanate (TDI) is a leading cause of occupational asthma. Although considerable controversy remains regarding its pathogenesis, TDI-induced asthma is an inflammatory disease of the airways characterized by airway remodeling. Peroxisome proliferator-activated receptor gamma (PPARgamma) has been shown to play a critical role in the control of airway inflammatory responses. However, no data are available on the role of PPARgamma in TDI-induced asthma. We have used a mouse model for TDI-induced asthma to determine the effect of PPARgamma agonist, rosiglitazone, or pioglitazone, and PPARgamma on TDI-induced bronchial inflammation and airway remodeling. This study with the TDI-induced model of asthma revealed the following typical pathophysiological features: increased numbers of inflammatory cells of the airways, airway hyperresponsiveness, increased levels of Th2 cytokines (IL-4, IL-5, and IL-13), adhesion molecules (ICAM-1 and VCAM-1), chemokines (RANTES and eotaxin), TGF-beta1, and NF-kappaB in nuclear protein extracts. In addition, the mice exposed to TDI developed features of airway remodeling, including thickening of the peribronchial smooth muscle layer, subepithelial collagen deposition, and increased airway mucus production. Administration of PPARgamma agonists or adenovirus carrying PPARgamma2 cDNA reduced the pathophysiological symptoms of asthma and decreased the increased levels of Th2 cytokines, adhesion molecules, chemokines, TGF-beta1, and NF-kappaB in nuclear protein extracts after TDI inhalation. In addition, inhibition of NF-kappaB activation decreased the increased levels of Th2 cytokines, adhesion molecules, chemokines, and TGF-beta1 after TDI inhalation. These findings demonstrate a protective role of PPARgamma in the pathogenesis of the TDI-induced asthma phenotype.  相似文献   

2.
3.
Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.  相似文献   

4.
Asthma is a major cause of morbidity and mortality, affecting some 300 million people throughout the world (1). More than 8% of the US population has asthma, with the prevalence increasing (2). As with other diseases, animal models of allergic airway disease greatly facilitate understanding of the underlying pathophysiology, help identify potential therapeutic targets, and allow preclinical testing of possible new therapies. Models of allergic airway disease have been developed in several animal species, but murine models are particularly attractive due to the low cost, ready availability, and well-characterized immune systems of these animals (3). Availability of a variety of transgenic strains further increases the attractiveness of these models (4). Here we describe two murine models of allergic airway disease, both employing ovalbumin as the antigen. Following initial sensitization by intraperitoneal injection, one model delivers the antigen challenge by nebulization, the other by intratracheal delivery. These two models offer complementary advantages, with each mimicking the major features of human asthma (5). The major features of acute asthma include an exaggerated airway response to stimuli such as methacholine (airway hyperresponsiveness; AHR) and eosinophil-rich airway inflammation. These are also prominent effects of allergen challenge in our murine models (5,6), and we describe techniques for measuring them and thus evaluating the effects of experimental manipulation. Specifically, we describe both invasive (7) and non-invasive (8) techniques for measuring airway hyperresponsiveness as well as methods for assessing infiltration of inflammatory cells into the airways and the lung. Airway inflammatory cells are collected by bronchoalveolar lavage while lung histopathology is used to assess markers of inflammation throughout the organ. These techniques provide powerful tools for studying asthma in ways that would not be possible in humans.  相似文献   

5.
6.
There is very limited knowledge about the effects of alcohol on airway hyperresponsiveness and inflammation in asthma. Historical accounts of alcohol administration to patients with breathing problems suggest that alcohol may have bronchodilating properties. We hypothesized that alcohol exposure will alter airway hyperresponsiveness (AHR) and pulmonary inflammation in a mouse model of allergic asthma. To test this hypothesis, BALB/c mice were fed either 18% alcohol or water and then sensitized and challenged with ovalbumin (OVA). AHR was assessed by means of ventilation or barometric plethysmography and reported as either total lung resistance or enhanced pause, respectively. Airway inflammation was assessed by total and differential cell counts in bronchoalveolar lavage fluid (BALF), cytokine levels in BALF, lung histology, and serum immunoglobulin E (IgE) levels. Alcohol feeding significantly blocked methacholine-induced increases in AHR compared with water-fed controls. Alcohol feeding significantly reduced total cell numbers (64%) as well as the number of eosinophils (84%) recruited to the lungs of these mice. Modest changes in lung pathology were also observed. Alcohol exposure led to a reduction of IgE in the serum of the EtOH OVA mice. These data demonstrate that alcohol exposure blunts AHR and dampens allergic airway inflammation indices in allergic mice and suggest that there may be an important role for alcohol in the modulation of asthma. These data provide an in vivo basis for previous clinical observations in humans substantiating the bronchodilator properties of alcohol and for the first time demonstrates an alcohol-induced reduction of allergic inflammatory cells in a mouse model of allergic asthma.  相似文献   

7.
Smooth muscle molecular mechanics in airway hyperresponsiveness and asthma   总被引:1,自引:0,他引:1  
Asthma is a respiratory disorder characterized by airway inflammation and hyperresponsiveness associated with reversible airway obstruction. The relative contributions of airway hyperresponsiveness and inflammation are still debated, but ultimately, airway narrowing mediated by airway smooth muscle contraction is the final pathway to asthma. Considerable effort has been devoted towards identifying the factors that lead to the airway smooth muscle hypercontractility observed in asthma, and this will be the focus of this review. Airway remodeling has been observed in severe and fatal asthma. However, it is unclear whether remodeling plays a protective role or worsens airway responsiveness. Smooth muscle plasticity is a mechanism likely implicated in asthma, whereby contractile filament rearrangements lead to maximal force production, independent of muscle length. Increased smooth muscle rate of shortening via altered signaling pathways or altered contractile protein expression has been demonstrated in asthma and in numerous models of airway hyperresponsiveness. Increased rate of shortening is implicated in counteracting the relaxing effect of tidal breathing and deep inspirations, thereby creating a contracted airway smooth muscle steady-state. Further studies are therefore required to understand the numerous mechanisms leading to the airway hyperresponsiveness observed in asthma as well as their multiple interactions.  相似文献   

8.
Bronchial hyperresponsiveness and eosinophilia are major characteristics of asthma. Calcitonin gene-related peptide (CGRP) is a neuropeptide that has various biological actions. In the present study, we questioned whether CGRP might have pathophysiological roles in airway hyperresponsiveness and eosinophilia in asthma. To determine the exact roles of endogenous CGRP in vivo, we chose to study antigen-induced airway responses using CGRP gene-disrupted mice. After ovalbumin sensitization and antigen challenge, we assessed airway responsiveness and measured proinflammatory mediators. In the sensitized CGRP gene-disrupted mice, antigen-induced bronchial hyperresponsiveness was significantly attenuated compared with the sensitized wild-type mice. Antigen challenge induced eosinophil infiltration in bronchoalveolar lavage fluid, whereas no differences were observed between the wild-type and CGRP-mutant mice. Antigen-induced increases in cysteinyl leukotriene production in the lung were significantly reduced in the CGRP-disrupted mice. These findings suggest that CGRP could be involved in the antigen-induced airway hyperresponsiveness, but not eosinophil infiltration, in mice. The CGRP-mutant mice may provide appropriate models to study molecular mechanisms underlying CGRP-related diseases.  相似文献   

9.
Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice (p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.  相似文献   

10.
Allergic asthma is characterized by airway inflammation initiated by adaptive immune responses to aeroallergens. Recent data suggest that severe asthma may be a different form of asthma rather than an increase in asthma symptoms and that innate immune responses to LPS can modulate adaptive immune responses to allergens. In this study, we evaluated the hypothesis that airway exposure to different doses of LPS induces different form of asthma. Our study showed that neutrophilic inflammation and IFN-gamma expression were higher in induced sputum from severe asthma patients than from mild to moderate asthmatics. Animal experiments indicated that allergen sensitization with low-dose LPS (0.1 microg) induced type 2 asthma phenotypes, i.e., airway hyperresponsiveness, eosinophilic inflammation, and allergen-specific IgE up-regulation. In contrast, allergen sensitization with high-dose LPS (10 microg) induced asthma phenotypes, i.e., airway hyperresponsiveness and noneosinophilic inflammation that were not developed in IFN-gamma-deficient mice, but unaffected in the absence of IL-4. During the allergen sensitization period, TNF-alpha expression was found to be enhanced by both low- and high-dose LPS, whereas IL-12 expression was only enhanced by high-dose LPS. Interestingly, the asthma phenotypes induced by low-dose LPS, but not by high-dose LPS, were completely inhibited in TNF-alpha receptor-deficient mice, whereas the asthma phenotypes induced by high-dose LPS were abolished in the homozygous null mutation of the STAT4 gene. These findings suggest that airway exposure levels of LPS induces different forms of asthma that are type 1 and type 2 asthma phenotypes by high and low LPS levels, respectively.  相似文献   

11.
Diisocyanates are the leading cause of occupational asthma, and epidemiological evidence suggests that occupational rhinitis is a comorbid and preceding condition in patients who develop asthma. The goal of the present studies was to develop and characterize a murine model of toluene diisocyanate (TDI)-induced rhinitis. Female C57BL/6 mice were exposed to workplace-relevant concentrations of TDI vapor via inhalation for 4 h/day for 12 days with or without a 2-wk rest period and TDI challenge. Mice exposed 12 consecutive weekdays to 50 parts per billion TDI vapor showed elevated total serum IgE and increased TDI-specific IgG titers. Breathing rates were decreased corresponding with increased inspiratory time. TDI exposure elevated IL-4, IL-5, IL-13, and IFN-gamma mRNA expression in the nasal mucosa, suggesting a mixed Th1/Th2 immune response. Expressions of mRNA for proinflammatory cytokines and adhesion molecules were also up-regulated. These cytokine changes corresponded with a marked influx of inflammatory cells into the nasal mucosa, eosinophils being the predominant cell type. Removal from exposure for 2 wk resulted in reduced Ab production, cytokine mRNA expression, and cellular inflammation. Subsequent challenge with 50 parts per billion TDI vapor resulted in robust up-regulation of Ab production, cytokine gene expression, as well as eosinophilic inflammation in the nasal mucosa. There were no associated changes in the lung. The present model shows that TDI inhalation induces immune-mediated allergic rhinitis, displaying the major features observed in human disease. Future studies will use this model to define disease mechanisms and examine the temporal/dose relationship between TDI-induced rhinitis and asthma.  相似文献   

12.
《Epigenetics》2013,8(12):1463-1470
Airway remodeling and airway hyperresponsiveness are major aspects of asthma pathology that are not targeted optimally by existing anti-inflammatory drugs. Histone deacetylase inhibitors have a wide range of effects that may potentially abrogate aspects of remodeling. One such histone deacetylase inhibitor is valproic acid (2-propylvaleric acid). Valproic acid is used clinically as an anti-epileptic drug and is a potent inhibitor of class I histone deacetylases but also inhibits class II histone deacetylases. We used valproic acid as a molecular model of histone deacetylase inhibition in vivo in chronic allergic airways disease mice with airway remodeling and airway hyperresponsiveness. Wild-type Balb/c mice with allergic airways disease were treated with valproic acid or vehicle control. Airway inflammation was assessed by bronchoalveolar lavage fluid cell counts and examination of lung tissue sections. Remodeling was assessed by morphometric analysis of histochemically stained slides and lung function was assessed by invasive plethysmography measurement of airway resistance. Valproic acid treatment did not affect inflammation parameters; however, valproic acid treatment resulted in reduced epithelial thickness as compared to vehicle treated mice

(p < 0.01), reduced subepithelial collagen deposition (p < 0.05) and attenuated airway hyperresponsiveness (p < 0.05 and p < 0.01 for the two highest doses of methacholine, respectively). These findings show that treatment with valproic acid can reduce structural airway remodeling changes and hyperresponsiveness, providing further evidence for the potential use of histone deacetylase inhibitors for the treatment of asthma.  相似文献   

13.
New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.  相似文献   

14.
Respiratory RNA viruses responsible for the common cold often worsen airway inflammation and bronchial responsiveness, two characteristic features of human asthma. We studied the effects of dsRNA, a nucleotide synthesized during viral replication, on airway inflammation and bronchial hyperresponsiveness in murine models of asthma. Intratracheal instillation of poly I:C, a synthetic dsRNA, increased the airway eosinophilia and enhanced bronchial hyperresponsiveness to methacholine in OVA-sensitized, exposed rats. These changes were associated with induction of cyclooxygenase-2 (COX-2) expression and COX-2-dependent PGD2 synthesis in the lungs, particularly in alveolar macrophages. The direct intratracheal instillation of PGD2 enhanced the eosinophilic inflammation in OVA-exposed animals, whereas pretreatment with a dual antagonist against the PGD2 receptor-(CRTH2) and the thromboxane A2 receptor, but not with a thromboxane A2 receptor-specific antagonist, nearly completely eliminated the dsRNA-induced worsening of airway inflammation and bronchial hyperresponsiveness. CRTH2-deficient mice had the same degree of allergen-induced airway eosinophilia as wild-type mice, but they did not exhibit a dsRNA-induced increase in eosinophil accumulation. Our data demonstrate that COX-2-dependent production of PGD2 followed by eosinophil recruitment into the airways via a CRTH2 receptor are the major pathogenetic factors responsible for the dsRNA-induced enhancement of airway inflammation and responsiveness.  相似文献   

15.
Animal models exhibiting high homology with humans at the genetic and pathophysiological levels will facilitate identification and validation of gene targets underlying asthma. In the present study, a nonhuman primate model of allergic asthma was developed by sensitizing cynomolgus monkeys to dust mite antigen. Sensitization elevated allergen-specific serum IgE and IgG levels, and peripheral blood mononuclear cells isolated from sensitized animals released IL-4, IL-5, and IL-10, but not IFN-gamma. Aerosolized allergen decreased dynamic compliance and induced airway inflammation and hyperresponsiveness to aerosolized histamine. Albuterol and dexamethasone inhibited the airway constriction and allergen-induced inflammation, respectively. Airway wall remodeling that included goblet cell hyperplasia, basement membrane thickening, and smooth muscle hypertrophy was particularly evident in neonatally sensitized animals. In contrast to animals sensitized as adults, neonatally sensitized animals exhibited increased sensitivity to adenosine and larger allergen-induced changes in airway resistance and dynamic compliance. These results demonstrate that sensitization of cynomolgus monkeys with dust mite induces asthmalike symptoms, some of which may be dependent on age at the time of sensitization.  相似文献   

16.

Background

The definition of "clinical asthma remission" is based on absence of symptoms and use of medication. However, in the majority of these subjects airway inflammation is still present when measured. In the present study we investigated whether "complete asthma remission", additionally defined by the absence of bronchial hyperresponsiveness (BHR) and the presence of a normal lung function, is associated with the absence of airway inflammation.

Methods

Patients with a former diagnosis of asthma and a positive histamine provocation test were re-examined to identify subjects with complete asthma remission (no asthma symptoms or medication, PC20 histamine > 32 mg/ml, FEV1 > 90% predicted). Patients with PC20 histamine ≤ 32 mg/ml were defined as current asthmatics and were divided in two groups, i.e. asthmatics with and without BHR to adenosine 5'monophoshate (AMP). Sputum induction was performed 1 week before and 1 hour after AMP provocation. Sputum induction and AMP provocation were previously shown to be sensitive markers of airway inflammation.

Results

Seven patients met criteria for complete asthma remission. Twenty-three were current asthmatics, including twelve without hyperresponsiveness to AMP. Subjects with complete asthma remission showed no AMP-induced sputum eosinophilia (median (range) 0.2 (0 - 4.6)% at baseline and 0.2 (0 - 2.6)% after AMP). After AMP, current asthmatics had a significant increase in sputum eosinophils (0.5 (0 - 26.0)% at baseline and 2.6 (0 - 32.0) % after AMP), as had the subgroup of current asthmatics without hyperresponsiveness to AMP (0.2 (0 - 1.8)% at baseline and 1.3 (0 - 6.3)% after AMP).

Conclusions

Subjects with complete asthma remission, in contrast to subjects with current asthma, do not respond with eosinophilic inflammation in sputum after AMP provocations. These data lend support to the usefulness of the definition of complete asthma remission.  相似文献   

17.
The morbidity and mortality from asthma in the Western world have increased 75% in the past 20 years. Recent studies have demonstrated that sensitization to cockroach allergens correlates strongly with the increased asthma morbidity for adults and children. We investigated whether dexamethasone administered before or after allergen challenge would inhibit the pulmonary inflammation and airway hyperresponsiveness in a mouse model of asthma induced by a house dust extract with high levels of cockroach allergens. For the prevention experiment, mice were treated with an intraperitoneal injection of dexamethasone 1 h before each pulmonary challenge, and airway hyperresponsiveness was measured 24 h after the last challenge. Mice were killed 48 h after the last challenge. For the reversal study, airway hyperresponsiveness was measured 24 h after the last challenge, and the mice were treated with dexamethasone. Dexamethasone treatment before allergen challenge significantly reduced the pulmonary recruitment of inflammatory cells, myeloperoxidase activity in the lung, airway hyperreactivity, and total serum IgE levels compared with PBS-treated mice. Additionally, dexamethasone treatment could significantly reduce the airway hyperreactivity of an established asthmatic response. These results demonstrate that dexamethasone not only prevents but also halts the asthmatic response induced by house dust containing cockroach allergens. This model exhibits several features of human asthma that may be exploited in the study of pathophysiological mechanisms and potential therapeutic interventions.  相似文献   

18.
The central role for Th2 cells in the development of Ag-induced airway hyperresponsiveness and eosinophilic inflammation is well documented. We have reported a crucial role for TCR-induced activation of the Ras/extracellular signal-regulated kinase mitogen-activated protein kinase cascade in Th2 cell differentiation. Here, we show that the development of both OVA-induced airway hyperresponsiveness and eosinophilic airway inflammation in a mouse asthma model are attenuated in transgenic mice by the overexpression of enzymatically inactive Ras molecules in T cells. In addition, reduced levels of IL-5 production and eosinophilic inflammation induced by nematode infection (Nippostrongylus brasiliensis or Heligmosomoides polygyrus) were detected. Thus, the level of Ras activation in T cells appears to determine Th2-dependent eosinophilic inflammation and Ag-induced airway hyperresponsiveness.  相似文献   

19.
Toluene diisocyanate (TDI) is a highly volatile chemical known to cause occupational asthma in exposed workers. TDI-induced asthma is associated with airway epithelium injury and repair, and subepithelial fibrosis. We investigated the effect of TDI and its hydrolysis products, the 2,4- and 2,6-toluenediamines (TDA), on viability and growth of human lung fibroblasts (HLFs) in culture, using a tetrazolium-based cell viability assay. The effects of increasing concentrations of each of these chemicals were evaluated on quiescent cells seeded at two densities (2500 and 5000 cells/well) and treated for 24 or 48 h. TDI (10–4–10–5 mol/L, as a mixture of 80% 2,4-TDI and 20% 2,6-TDI) exhibited a partial but significant cytotoxic effect (10–24%, p<0.05) on HLFs. This effect was observed at both cell densities, and was time- and concentration-dependent. 2,4-TDA, at lower concentrations (10–8–10–6 mol/L) applied for 48 h, also partially reduced HLF viability (10–15%, p<0.05), whereas it tended to trigger cell growth at concentrations higher than 10–5 mol/L. 2,6-TDA exhibited both a cytotoxic and a proliferative effect on HLFs that depended on concentration, time of exposure and cell culture density. Significant cytotoxicity was only observed after 24 h of treatment with 10–7–10–6 mol/L 2,6-TDA, and reached greater intensity in cells cultured at the highest density. In contrast, 2,6-TDA stimulated HLF growth only after 48 h of incubation at 10–4 mol/L on cells cultured at the lowest density. Taken together, our results showed that TDI and 2,4-TDA somewhat decreased HLF viability, whereas 2,6-TDA appeared to exhibit both a cytotoxic and a growth stimulatory effect on these cells. TDI and 2,4-TDA are thus suggested to contribute to airway epithelium damage associated with TDI-induced asthma, whereas 2,6-TDA might either trigger epithelial damage or induce cell proliferation that could contribute to epithelium repair or subepithelial fibrosis.  相似文献   

20.
AimsFudosteine is a cysteine derivative that is used as an expectorant in chronic bronchial inflammatory disorders. It has been shown to decrease the number of goblet cells in an animal model. This study examined the effects of fudosteine on airway inflammation and remodeling in a murine model of chronic asthma.Main methodsBALB/c mice were sensitized by an intraperitoneal injection of ovalbumin (OVA), and subsequently challenged with nebulized ovalbumin three days a week for four weeks. Seventy-two hours after the fourth challenge, airway hyperresponsiveness (AHR) and the cell composition of bronchoalveolar lavage (BAL) fluid were assessed. Fudosteine was administered orally at 10 mg/kg or 100 mg/kg body weight from the first to the fourth challenge.Key findingsWe investigated the effects of fudosteine on the development of allergic airway inflammation and airway hyperresponsiveness after chronic allergen challenges. The administration of fudosteine during the challenge with ovalbumin prevented the development of airway hyperresponsiveness and accumulation of lymphocytes in the airways. Eotaxin, IL-4, and TGF-β levels and the relative intensity of matrix metalloproteinase-2 and matrix metalloproteinase-9 (MMP-2 and MMP-9) in BAL fluid were reduced by the fudosteine treatment; however, the number of eosinophils in BAL fluid and serum IgE levels did not change. The expression of TGF-β, the development of goblet cell hyperplasia, subepithelial collagenization, and basement membrane thickening were also reduced by the fudosteine treatment.SignificanceThese results indicate that fudosteine is effective in reducing airway hyperresponsiveness, airway inflammation, and airway remodeling in a murine model of chronic asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号