首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural inhomogeneities in biomembranes can lead to complex diffusive behavior of membrane proteins that depend on the length or time scales that are probed. This effect is well studied in eukaryotic cells, but has been explored only recently in bacteria. Here we used fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) to study diffusion of the membrane protein TetA-YFP in E. coli. We find that the diffusion constant determined from FRAP is comparable to other reports of inner membrane protein diffusion constants in E. coli. However, FCS, which probes diffusion on shorter length scales, gives a value that is almost two orders of magnitude higher and is comparable to lipid diffusion constants. These results suggest there is a population of TetA-YFP molecules in the membrane that move rapidly over short length scales (∼ 400 nm) but move significantly more slowly over the longer length scales probed by FRAP.  相似文献   

2.
3.
Nicotinic acetylcholine receptor (AChR) function and distribution are quite sensitive to cholesterol (Chol) levels in the plasma membrane (reviewed by Barrantes in J Neurochem 103 (suppl 1):72–80, 2007). Here we combined confocal fluorescence recovery after photobleaching (FRAP) and confocal fluorescence correlation spectroscopy (FCS) to examine the mobility of the AChR and its dependence on Chol content at the cell surface of a mammalian cell line. Plasma membrane AChR exhibited limited mobility and only ~55% of the fluorescence was recovered within 10 min after photobleaching. Depletion of membrane Chol by methyl-β-cyclodextrin strongly affected the mobility of the AChR at the plasma membrane; the fraction of mobile AChR fell from 55 to 20% in Chol-depleted cells, whereas Chol enrichment by methyl-β-cyclodextrin-Chol treatment did not reduce receptor mobility at the cell surface. Actin depolymerization caused by latrunculin A partially restored receptor mobility in Chol-depleted cells. In agreement with the FRAP data, scanning FCS experiments showed that the diffusion coefficient of the AChR was about 30% lower upon Chol depletion. Taken together, these results suggest that membrane Chol modulates AChR mobility at the plasma membrane through a Chol-dependent mechanism sensitive to cortical actin.  相似文献   

4.
In this chapter, we discuss methods to measure lateral mobility of membrane lipids and proteins using techniques based on the light microscope. These methods typically sample lateral mobility in very small, micron-sized regions of the membrane so that they can be used to measure diffusion in regions of single cells. The methods are based on fluorescence from the molecules of interest or from light scattered from particles attached to single or small groups of membrane lipids or proteins. Fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS) and Single particle tracking (SPT) are presented in that order. FRAP and FCS methodologies are described for a dedicated wide field microscope although many confocal microscopes now have software permitting these measurement to be made; nevertheless, the principles of the measurement are the same for a wide field or confocal microscope. SPT can be applied to trace the movements of single fluorescent molecules in membranes but this aspect will not be treated in detail.  相似文献   

5.
During phagosome maturation, the late endosomal marker Rab7 and the lysosomal marker LAMP1 localize to the phagosomes. We investigated the mobility of Rab7 and LAMP1 on the phagosomes in macrophages by fluorescence recovery after photobleaching (FRAP) analysis. Rab7 was mobile between the phagosomal membrane and the cytosol in macrophages that ingested latex beads during phagosome maturation. The addition of interferon-γ (IFN-γ) restricted this mobility, suggesting that Rab7 is forced to bind to the phagosomal membrane by IFN-γ-mediated activation. Immobilization of LAMP1 on the phagosomes was observed irrespective of IFN-γ-activation. We further examined the mobility of Rab7 on the phagosomes containing Mycobacterium bovis BCG by FRAP analysis. The rate of fluorescence recovery for Rab7 on mycobacterial phagosomes was lower than that on the phagosomes containing latex beads, suggesting that mycobacteria impaired the mobility of Rab7 and arrested phagosome maturation.  相似文献   

6.
The plasma membrane assembly of aquaporin-4 (AQP4) water channels into orthogonal arrays of particles (OAPs) involves interactions of AQP4 N-terminal domains. To study in live cells the site of OAP assembly, the size and dynamics of plasma membrane OAPs, and the heterotetrameric associations of AQP4, we constructed green fluorescent protein (GFP)-labeled AQP4 “long” (M1) and “short” (M23) isoforms in which GFP was inserted at the cytoplasm-facing N or C terminus or between Val-141 and Val-142 in the second extracellular loop of AQP4. The C-terminal and extracellular loop GFP insertions did not interfere with the rapid unrestricted membrane diffusion of GFP-labeled M1 or the restricted diffusion and OAP assembly of GFP-labeled M23. Photobleaching of brefeldin A-treated cells showed comparable and minimally restricted diffusion of M1 and M23, indicating that OAP assembly occurs post-endoplasmic reticulum. Single-molecule step photobleaching and intensity analysis of GFP-labeled M1 in the absence versus presence of excess unlabeled M1 or M23 with an OAP-disrupting mutation indicated heterotetrameric AQP4 association. Time-lapse total internal reflection fluorescence imaging of M23 in live cells at 37 °C indicated that OAPs diffuse slowly (D ∼ 10−12 cm2/s) and rearrange over tens of minutes. Our biophysical measurements in live cells thus reveal extensive AQP4 monomer-monomer and tetramer-tetramer interactions.  相似文献   

7.
Aquaporins of the plasma membrane intrinsic protein (PIP) subfamily are channels which facilitate the diffusion of water across the plant plasma membrane (PM). Although PIPs have been considered as canonical protein markers of this compartment, their endomembrane trafficking is still not well documented. We recently obtained insights into the constitutive cycling of PIPs in Arabidopsis root cells by means of fluorescence recovery after photobleaching (FRAP). This work also uncovered the behavior of the model isoform AtPIP2;1 in response to NaCl. The present addendum connects these findings to another recent work which describes the dynamic properties of AtPIP2;1 in the PM in normal and salt stress conditions by means of single particle tracking (SPT) and fluorescence correlation spectroscopy (FCS). The results suggest that membrane rafts play an important role in the partitioning of AtPIP2;1 in normal conditions and that clathrin-mediated endocytosis is predominant. In salt stress conditions, the rate of AtPIP2;1 cycling was enhanced and endocytosis was cooperated by a membrane raft-associated salt-induced pathway and a clathrin-dependent pathway.  相似文献   

8.
To investigate microdomain association of the dopamine transporter (DAT), we employed FCS (fluorescence correlation spectroscopy) and FRAP (fluorescence recovery after photobleaching). In non-neuronal cells (HEK293), FCS measurements revealed for the YFP-DAT (DAT tagged with yellow fluorescent protein) a diffusion coefficient (D) of approximately 3.6 x 10(-9) cm2/s, consistent with a relatively freely diffusible protein. In neuronally derived cells (N2a), we were unable to perform FCS measurements on plasma membrane-associated protein due to photobleaching, suggesting partial immobilization. This was supported by FRAP measurements that revealed a lower D and a mobile fraction of the YFP-DAT in N2a cells compared to HEK293 cells. Comparison with the EGFP-EGFR (epidermal growth factor receptor) and the EGFP-beta2AR (beta2 adrenergic receptor) demonstrated that this observation was DAT specific. Both the cytoskeleton-disrupting agent cytochalasin D and the cholesterol-depleting agent methyl-beta-cyclodextrin (mbetaCD) increased the lateral mobility of the YFP-DAT but not that of the EGFP-EGFR. The DAT associated in part with membrane raft markers both in the N2a cells and in rat striatal synaptosomes as assessed by sucrose density gradient centrifugation. Raft association was further confirmed in the N2a cells by cholera toxin B patching. It was, moreover, observed that cholesterol depletion, and thereby membrane raft disruption, decreased both the Vmax and KM values for [3H]dopamine uptake without altering DAT surface expression. In summary, we propose that association of the DAT with lipid microdomains in the plasma membrane and/or the cytoskeleton serves to regulate both the lateral mobility of the transporter and its transport capacity.  相似文献   

9.
10.
The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN.  相似文献   

11.
Although phosphatidylinositol 4,5-bisphosphate (PIP2) regulates syndecan-4 function, the potential influence of syndecan-4 on PIP2 remains unknown. GFP containing PIP2-binding-PH domain of phospholipase Cδ (GFP-PHδ) was used to monitor PIP2. Syndecan-4 overexpression in COS-7 cells enhanced membrane translocation of GFP-PHδ, while the opposite was observed when syndecan-4 was knocked-down. PIP2 levels were higher in total phospholipids extracted from rat embryo fibroblasts expressing syndecan-4. Syndecan-4-induced membrane targeting of GFP-PHδ was further enhanced by phosphoinositide-3-kinase inhibitor, but not by phospholipase C (PLC) inhibitor. Besides, both ionomycin and epidermal growth factor caused dissociation of GFP-PHδ from plasma membrane, an effect that was significantly delayed by syndecan-4 over-expression. Collectively, these data suggest that syndecan-4 promotes plasma membrane retention of PIP2 by negatively regulating PLC-dependent PIP2 degradation.  相似文献   

12.
13.
Here we investigated the effect of disruption of plasma membrane integrity by cholesterol depletion on thyrotropin-releasing hormone receptor (TRH-R) surface mobility in HEK293 cells stably expressing TRH-R-eGFP fusion protein (VTGP cells). Detailed analysis by fluorescence recovery after photobleaching (FRAP) in bleached spots of different sizes indicated that cholesterol depletion did not result in statistically significant alteration of mobile fraction of receptor molecules (Mf). The apparent diffusion coefficient (Dapp) was decreased, but this decrease was detectable only under the special conditions of screening and calculation of FRAP data. Analysis of mobility of receptor molecules by raster image correlation spectroscopy (RICS) did not indicate any significant difference between control and cholesterol-depleted cells. Results of our FRAP and RICS experiments may be collectively interpreted in terms of a “membrane fence” model which regards the plasma membrane of living cells as compartmentalized plane where lateral diffusion of membrane proteins is limited to restricted areas by cytoskeleton constraints. Hydrophobic interior of plasma membrane, studied by steady-state and time-resolved fluorescence anisotropy of hydrophobic membrane probe DPH, became substantially more “fluid” and chaotically organized in cholesterol-depleted cells. Decrease of cholesterol level impaired the functional coupling between the receptor and the cognate G proteins of Gq/G11 family.In conclusion: the presence of an unaltered level of cholesterol in the plasma membrane represents an obligatory condition for an optimum functioning of TRH-R signaling cascade. The decreased order and increased fluidity of hydrophobic membrane interior suggest an important role of this membrane area in TRH-R–Gq/G11α protein coupling.  相似文献   

14.
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.  相似文献   

15.
Phosphatidylinositol 4,5-bisphosphate (PIP2) controls a surprisingly large number of processes in cells. Thus, many investigators have suggested that there might be different pools of PIP2 on the inner leaflet of the plasma membrane. If a significant fraction of PIP2 is bound electrostatically to unstructured clusters of basic residues on membrane proteins, the PIP2 diffusion constant, D, should be reduced. We microinjected micelles of Bodipy TMR-PIP2 into cells, and we measured D on the inner leaflet of fibroblasts and epithelial cells by using fluorescence correlation spectroscopy. The average ± SD value from all cell types was D = 0.8 ± 0.2 μm2/s (n = 218; 25°C). This is threefold lower than the D in blebs formed on Rat1 cells, D = 2.5 ± 0.8 μm2/s (n = 26). It is also significantly lower than the D in the outer leaflet or in giant unilamellar vesicles and the diffusion coefficient for other lipids on the inner leaflet of these cell membranes. The simplest interpretation is that approximately two thirds of the PIP2 on inner leaflet of these plasma membranes is bound reversibly.  相似文献   

16.
We used two approaches to characterize the lateral mobility of phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasmalemma of baby hamster kidney and Chinese hamster ovary fibroblasts. First, nitrobenzoxadiazole-labeled C6-phosphatidylcholine and C16-PIP2 were incorporated into plasma membrane “lawns” (∼20 × 30 μm) from these cells and into the outer monolayer of intact cells. Diffusion coefficients determined by fluorescence recovery after photobleaching were similar for the two lipids and were higher in lawns, ∼0.3 μm2/s, than on the cell surface, ∼0.1 μm2/s. For membrane lawns, the fractional recoveries (75–90%) were close to those expected from the fraction of total membrane bleached, and labeling by the probes was several times greater than for intact cells. Second, we analyzed cells expressing M1 muscarinic receptors and green fluorescent protein fused with PIP2-binding pleckstrin-homology domains, Tubby domains or diacylglycerol (DAG)-binding C1 domains. On-cell gigaseal patches were formed with pipette tips >5 μm in diameter. When the agonist carbachol (0.3 mm) was applied either within or outside of the pipette, lipid signals crossed the pipette barrier rapidly in both directions and membrane blebbing occurred on both membrane sides. Accurate simulations of lipid gradients required diffusion coefficients >1 μm2/s. Exogenous DAG also crossed the pipette barrier rapidly. In summary, we found no evidence for restricted diffusion of signaling lipids in these cells. The lower mobility and incorporation of phospholipid at the extracellular leaflet may reflect a more ordered and condensed extracellular monolayer, as expected from previous studies. An erratum to this article can be found at  相似文献   

17.
Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.  相似文献   

18.
Phosphoinositides provide compartment-specific signals for membrane trafficking. Plasma membrane phosphatidylinositol 4,5-bisphosphate (PIP2) is required for Ca2+-triggered vesicle exocytosis, but whether vesicles fuse into PIP2-rich membrane domains in live cells and whether PIP2 is metabolized during Ca2+-triggered fusion were unknown. Ca2+-dependent activator protein in secretion 1 (CAPS-1; CADPS/UNC31) and ubMunc13-2 (UNC13B) are PIP2-binding proteins required for Ca2+-triggered vesicle exocytosis in neuroendocrine PC12 cells. These proteins are likely effectors for PIP2, but their localization during exocytosis had not been determined. Using total internal reflection fluorescence microscopy in live cells, we identify PIP2-rich membrane domains at sites of vesicle fusion. CAPS is found to reside on vesicles but depends on plasma membrane PIP2 for its activity. Munc13 is cytoplasmic, but Ca2+-dependent translocation to PIP2-rich plasma membrane domains is required for its activity. The results reveal that vesicle fusion into PIP2-rich membrane domains is facilitated by sequential PIP2-dependent activation of CAPS and PIP2-dependent recruitment of Munc13. PIP2 hydrolysis only occurs under strong Ca2+ influx conditions sufficient to activate phospholipase Cη2 (PLCη2). Such conditions reduce CAPS activity and enhance Munc13 activity, establishing PLCη2 as a Ca2+-dependent modulator of exocytosis. These studies provide a direct view of the spatial distribution of PIP2 linked to vesicle exocytosis via regulation of lipid-dependent protein effectors CAPS and Munc13.  相似文献   

19.
Clark MA  Sethi PR  Lambert NA 《FEBS letters》2007,581(4):764-770
RGS proteins accelerate the GTPase activity of heterotrimeric G proteins at the plasma membrane. Association of RGS proteins with the plasma membrane can be mediated by interactions with other membrane proteins and by direct interactions with the lipid bilayer. Here we use fluorescence recovery after photobleaching (FRAP) to characterize interactions between RGS2 and M3 acetylcholine receptors (M3Rs), Galpha subunits and the lipid bilayer. Active Galpha(q) and M3Rs both recruited RGS2-EGFP to the plasma membrane. RGS2-EGFP remained bound to the plasma membrane between interactions with active Galpha(q), but rapidly exchanged between membrane-associated and cytosolic pools when recruited by M3Rs.  相似文献   

20.
The plasma membrane-cytoskeleton interface is a dynamic structure participating in a variety of cellular events. Among the proteins involved in the direct linkage between the cytoskeleton and the plasma membrane is the ezrin/radixin/moesin (ERM) family. The FERM (4.1 ezrin/radixin/moesin) domain in their N-terminus contains a phosphatidylinositol 4,5 bisphosphate (PIP2) (membrane) binding site whereas their C-terminus binds actin. In this work, our aim was to quantify the interaction of ezrin with large unilamellar vesicles (LUVs) containing PIP2. For this purpose, we produced human recombinant ezrin bearing a cysteine residue at its C-terminus for subsequent labeling with Alexa488 maleimide. The functionality of labeled ezrin was checked by comparison with that of wild-type ezrin. The affinity constant between ezrin and LUVs was determined by cosedimentation assays and fluorescence correlation spectroscopy. The affinity was found to be ∼5 μM for PIP2-LUVs and 20-to 70-fold lower for phosphatidylserine-LUVs. These results demonstrate, as well, that the interaction between ezrin and PIP2-LUVs is not cooperative. Finally, we found that ezrin FERM domain (area of ∼30 nm2) binding to a single PIP2 can block access to neighboring PIP2 molecules and thus contributes to lower the accessible PIP2 concentration. In addition, no evidence exists for a clustering of PIP2 induced by ezrin addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号