首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review the molecular characteristics and reaction mechanisms of different Ca(2+) transport systems associated with various membranes in muscle cells will be summarized. The following topics will be discussed in detail: a brief history of early observations concerning maintenance and regulation of cellular Ca(2+) homeostasis, characterization of the Ca(2+) pumps residing in plasma membranes and sarco(endo)plasmic reticulum, mitochondrial Ca(2+) transport, Ca(2+)-binding proteins, coordinated expression of Ca(2+) transport systems, a general background of muscle excitation-contraction coupling with emphasis to the calcium release channels of plasma membrane and sarcoplasmic reticulum, the structure and function of dihydropyridine and ryanodine receptors of skeletal and cardiac muscles, and finally their disposition in various types of muscles.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by degeneration of motor neurons and atrophy of skeletal muscle. Mutations in the superoxide dismutase (SOD1) gene are linked to 20% cases of inherited ALS. Mitochondrial dysfunction has been implicated in the pathogenic process, but how it contributes to muscle degeneration of ALS is not known. Here we identify a specific deficit in the cellular physiology of skeletal muscle derived from an ALS mouse model (G93A) with transgenic overexpression of the human SOD1G93A mutant. The G93A skeletal muscle fibers display localized loss of mitochondrial inner membrane potential in fiber segments near the neuromuscular junction. These defects occur in young G93A mice prior to disease onset. Fiber segments with depolarized mitochondria show greater osmotic stress-induced Ca2+ release activity, which can include propagating Ca2+ waves. These Ca2+ waves are confined to regions of depolarized mitochondria and stop propagating shortly upon entering the regions of normal, polarized mitochondria. Uncoupling of mitochondrial membrane potential with FCCP or inhibition of mitochondrial Ca2+ uptake by Ru360 lead to cell-wide propagation of such Ca2+ release events. Our data reveal that mitochondria regulate Ca2+ signaling in skeletal muscle, and loss of this capacity may contribute to the progression of muscle atrophy in ALS.  相似文献   

3.
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites ‘mini’-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR.  相似文献   

4.
Carbonic anhydrase inhibition and calcium transients in soleus fibers   总被引:2,自引:0,他引:2  
P Wetzel  T Liebner  G Gros 《FEBS letters》1990,267(1):66-70
We simultaneously measured cytoplasmic Ca2+ transients using Fura-2 and isometric force in rat soleus fiber bundles. In the presence of the carbonic anhydrase inhibitor, chlorzolamide, we observed a decreased amplitude and retarded decay of the Ca2+ signal. This corresponded with a decreased isometric force and a retarded muscle relaxation. We conclude that muscle carbonic anhydrase participates in excitation-contraction coupling, possibly by rapidly providing protons that are exchanged for Ca2+ across the sarcoplasmic reticulum membrane.  相似文献   

5.
Kang TM  Park MK  Uhm DY 《Life sciences》2003,72(13):1467-1479
We have investigated the effects of hypoxia and mitochondria inhibitors on the capacitative Ca(2+) entry (CCE) in cultured smooth muscle cells from rabbit small pulmonary arteries. Cyclopiazonic acid (CPA) depleted Ca(2+) from sarcoplasmic reticulum (SR) in Ca(2+)-free medium and subsequent addition of Ca(2+) led to the nifedipine-insensitive, La(3+)-sensitive Ca(2+) influx. The presence of CCE was further verified by the measurement of unidirectional Mn(2+) influx. During the decay phase of the CCE-induced [Ca(2+)]c transients, hypoxia (P(O2) < 50 mmHg) and the mitochondria inhibitor FCCP reversibly increased [Ca(2+)]c, that is La(3+)-sensitive. Once SR is depleted by CPA, subsequent treatment of FCCP slowed the decay of CCE-induced [Ca(2+)]c transients but it did not attenuate Mn(2+) influx. Mitochondrial uptake of incoming Ca(2+) through CCE was demonstrated by additional increase in [Ca(2+)]c with Ca(2+) ionophore after terminating CCE. Together, it is suggested that the augmentation of CCE-induced [Ca(2+)]c transients by hypoxia and FCCP reflects a net gain of [Ca(2+)]c by the inhibition of mitochondrial Ca(2+) uptake.  相似文献   

6.
To unmask the role of triadin in skeletal muscle we engineered pan-triadin-null mice by removing the first exon of the triadin gene. This resulted in a total lack of triadin expression in both skeletal and cardiac muscle. Triadin knockout was not embryonic or birth-lethal, and null mice presented no obvious functional phenotype. Western blot analysis of sarcoplasmic reticulum (SR) proteins in skeletal muscle showed that the absence of triadin expression was associated with down-regulation of Junctophilin-1, junctin, and calsequestrin but resulted in no obvious contractile dysfunction. Ca(2+) imaging studies in null lumbricalis muscles and myotubes showed that the lack of triadin did not prevent skeletal excitation-contraction coupling but reduced the amplitude of their Ca(2+) transients. Additionally, null myotubes and adult fibers had significantly increased myoplasmic resting free Ca(2+).[(3)H]Ryanodine binding studies of skeletal muscle SR vesicles detected no differences in Ca(2+) activation or Ca(2+) and Mg(2+) inhibition between wild-type and triadin-null animals. Subtle ultrastructural changes, evidenced by the appearance of longitudinally oriented triads and the presence of calsequestrin in the sacs of the longitudinal SR, were present in fast but not slow twitch-null muscles. Overall, our data support an indirect role for triadin in regulating myoplasmic Ca(2+) homeostasis and organizing the molecular complex of the triad but not in regulating skeletal-type excitation-contraction coupling.  相似文献   

7.
α-Synuclein has a central role in Parkinson disease, but its physiological function and the mechanism leading to neuronal degeneration remain unknown. Because recent studies have highlighted a role for α-synuclein in regulating mitochondrial morphology and autophagic clearance, we investigated the effect of α-synuclein in HeLa cells on mitochondrial signaling properties focusing on Ca(2+) homeostasis, which controls essential bioenergetic functions. By using organelle-targeted Ca(2+)-sensitive aequorin probes, we demonstrated that α-synuclein positively affects Ca(2+) transfer from the endoplasmic reticulum to the mitochondria, augmenting the mitochondrial Ca(2+) transients elicited by agonists that induce endoplasmic reticulum Ca(2+) release. This effect is not dependent on the intrinsic Ca(2+) uptake capacity of mitochondria, as measured in permeabilized cells, but correlates with an increase in the number of endoplasmic reticulum-mitochondria interactions. This action specifically requires the presence of the C-terminal α-synuclein domain. Conversely, α-synuclein siRNA silencing markedly reduces mitochondrial Ca(2+) uptake, causing profound alterations in organelle morphology. The enhanced accumulation of α-synuclein into the cells causes the redistribution of α-synuclein to localized foci and, similarly to the silencing of α-synuclein, reduces the ability of mitochondria to accumulate Ca(2+). The absence of efficient Ca(2+) transfer from endoplasmic reticulum to mitochondria results in augmented autophagy that, in the long range, could compromise cellular bioenergetics. Overall, these findings demonstrate a key role for α-synuclein in the regulation of mitochondrial homeostasis in physiological conditions. Elevated α-synuclein expression and/or eventually alteration of the aggregation properties cause the redistribution of the protein within the cell and the loss of modulation on mitochondrial function.  相似文献   

8.
Store-operated Ca(2+) entry (SOCE) is a robust mechanism in skeletal muscle, supported by abundant STIM1 and Orai1 in the junctional membranes. The precise role of SOCE in skeletal muscle Ca(2+) homeostasis and excitation-contraction coupling remains to be defined. Regardless, it remains important to determine whether the function and capacity of SOCE changes in aged skeletal muscle. We identified an approximate 40% decline in the expression of the integral SOCE protein, stromal interacting molecule 1 (STIM1), but no such decline in its coupling partner, Orai1, in muscle fibers from aged mice. To determine whether this changed aspects of SOCE functionality in skeletal muscle in aged mice, Ca(2+) in the cytoplasm and t-system were continuously and simultaneously imaged on a confocal microscope during sarcoplasmic reticulum Ca(2+) release and compared to experiments under identical conditions using muscle fibers from young mice. Normal activation, deactivation, Ca(2+) influx, and spatiotemporal characteristics of SOCE were found to persist in skeletal muscle from aged mice. Thus, SOCE remains a robust mechanism in aged skeletal muscle despite the decline in STIM1 protein expression, suggesting STIM1 is in excess in young skeletal muscle.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons. Mutations in Cu/Zn superoxide dismutase-1 (SOD1) cause familial ALS but the molecular mechanisms whereby these mutations induce motor neuron death remain controversial. Here, we show that stable overexpression of mutant human SOD1 (G37R) - but not wild-type SOD1 (wt-SOD1) - in mouse neuroblastoma cells (N2a) results in morphological abnormalities of mitochondria accompanied by several dysfunctions. Activity of the oxidative phosphorylation complex I was significantly reduced in G37R cells and correlated with lower mitochondrial membrane potential and reduced levels of cytosolic ATP. Using targeted chimeric aequorin we further analyzed the consequences of mitochondrial dysfunction on cellular Ca(2+) handling. Mitochondrial Ca(2+) uptake, elicited by IP(3)-induced Ca(2+) release from endoplasmic reticulum (ER) was significantly reduced in G37R cells, while uptake induced by a brief Ca(2+) pulse was not affected in permeabilized cells. The decreased mitochondrial Ca(2+) uptake resulted in increased cytosolic Ca(2+) transients, whereas ER Ca(2+) load and resting cytosolic Ca(2+) levels were not affected. Together, these findings suggest that the mechanism linking mutant G37R SOD1 and ALS involves mitochondrial respiratory chain deficiency resulting in ATP loss and impairment of mitochondrial and cytosolic Ca(2+) homeostasis.  相似文献   

10.
Postnatal development of skeletal muscle occurs through the progressive transformation of diverse biochemical, metabolic, morphological, and functional characteristics from the embryonic to the adult phenotype. Since muscle regeneration recapitulates postnatal development of muscle fiber, it offers an appropriate experimental model to investigate the existing relationships between diverse muscle functions and the expression of key protein isoforms, particularly at the single-fiber level. This study was carried out in regenerating soleus muscle 14 days after injury. At this intermediate stage, the regenerating muscle exhibited a recovery of mass greater than its force generation capacity. The lower specific tension of regenerating muscle suggested intrinsic defective excitation-contraction coupling and/or contractility processes. The presence of developmental isoforms of both the voltage-gated Ca(2+) channel (alpha(1)C) and of ryanodine receptor 3, paralleled by an abnormal caffeine contracture development, confirms the immature excitation-contraction coupling of the regenerating muscle. The defective Ca(2+) handling could also be confirmed by the lower sarcoplasmic reticulum caffeine sensitivity of regenerating single fibers. Also, regenerating single fibers revealed a lower maximal specific tension, which was associated with the residual presence of embryonic myosin heavy chains. Moreover, the fibers showed a reduced Ca(2+) sensitivity of myofibrillar proteins, particularly those simultaneously expressing the slow and fast isoforms of troponin C. The present results indicate that the expression of developmental proteins determines the incomplete functional recovery of regenerating soleus.  相似文献   

11.
Muscular dysgenesis is a lethal mutation in mice that results in a complete absence of skeletal muscle contraction due to the failure of depolarization of the transverse tubular membrane to trigger calcium release from the sarcoplasmic reticulum. In order to determine whether the defect in muscular dysgenesis leads to a specific loss of one of the components of excitation-contraction coupling or to a generalized loss of all components of excitation-contraction coupling, we have analyzed skeletal muscle from control and dysgenic mice for the sarcoplasmic reticulum and transverse tubular proteins which are believe to function in excitation-contraction coupling. We report that the proteins involved in sarcoplasmic reticulum calcium transport, storage, and release [Ca2+ + Mg2+)-ATPase, calsequestrin, and calcium release channel) are present in dysgenic muscle. Also present in dysgenic muscle is the 175/150-kDa glycoprotein subunit (alpha 2) of the dihydropyridine receptor. However, the 170-kDa dihydropyridine binding subunit (alpha 1) of the dihydropyridine receptor is absent in dysgenic muscle. These results suggest that the specific absence of the alpha 1 subunit of the dihydropyridine receptor is responsible for the defects in muscular dysgenesis and that the alpha 1 subunit of the dihydropyridine receptor is essential for excitation-contraction coupling in skeletal muscle.  相似文献   

12.
The ryanodine receptor type 1 (RyR1) is a homotetrameric Ca(2+) release channel located in the sarcoplasmic reticulum of skeletal muscle where it plays a role in the initiation of skeletal muscle contraction. A soluble, 6×-histidine affinity-tagged cytosolic fragment of RyR1 (amino acids 1-4243) was expressed in HEK-293 cells, and metal affinity chromatography under native conditions was used to purify the peptide together with interacting proteins. When analyzed by gel-free liquid chromatography mass spectrometry (LC-MS), 703 proteins were identified under all conditions. This group of proteins was filtered to identify putative RyR interacting proteins by removing those proteins found in only 1 RyR purification and proteins for which average spectral counts were enriched by less than 4-fold over control values. This resulted in 49 potential RyR1 interacting proteins, and 4 were selected for additional interaction studies: calcium homeostasis endoplasmic reticulum protein (CHERP), endoplasmic reticulum-Golgi intermediate compartment 53-kDa protein (LMAN1), T-complex protein, and phosphorylase kinase. Western blotting showed that only CHERP co-purified with affinity-tagged RyR1 and was eluted with imidazole. Immunofluorescence showed that endogenous CHERP co-localizes with endogenous RyR1 in the sarcoplasmic reticulum of rat soleus muscle. A combination of overexpression of RyR1 in HEK-293 cells with siRNA-mediated suppression of CHERP showed that CHERP affects Ca(2+) release from the ER via RyR1. Thus, we propose that CHERP is an RyR1 interacting protein that may be involved in the regulation of excitation-contraction coupling.  相似文献   

13.
Calcium is the most ubiquitous second messenger. Its concentration inside the cell is tightly regulated by a series of mechanisms, among which some have been extensively studied in nonmuscle cells. This is the case of the "store-operated entry of Ca(2+)", the uptake of Ca(2+) by mitochondria and the inositol 1,4,5-trisphosphate (IP(3)) cascade. These processes were recently found to be also present in skeletal muscle and are reviewed here. The "store-operated entry of Ca(2+)" allows the refilling of the stores after muscle fiber depolarization and is activated even after a partial depletion of the sarcoplasmic reticulum (SR). The uptake of Ca(2+) by mitochondria accelerates muscle relaxation and allows the adaptation of ATP supply to the increased energy demand. IP(3) receptors are found in the nuclear envelope and are involved in Ca(2+) waves propagating from one nucleus to another. This pathway is possibly involved in gene expression regulation. Finally, cytosolic Ca(2+) buffers like parvalbumins modify [Ca(2+)](i) transients and, therefore, muscle mechanics.The importance of these regulation mechanisms is also evaluated in Duchenne muscular dystrophy (DMD), a disease in which impairment of [Ca(2+)](i) homeostasis has been postulated but remains, however, controversial. This genetic disease is indeed characterized by the absence of a cytoskeletal protein called dystrophin, a situation leading to a disorganization of the cytoskeleton and to an abnormal influx of Ca(2+). How this increased entry of Ca(2+) affects the local concentration of Ca(2+) in subcellular compartments and whether this process is involved in the development of the disease are still unclear.  相似文献   

14.
The chronic stimulation of predominantly fast-twitch mammalian skeletal muscle causes a transformation to physiological characteristics of slow-twitch skeletal muscle. Here, we report the effects of chronic stimulation on the protein components of the sarcoplasmic reticulum and transverse tubular membranes which are directly involved in excitation-contraction coupling. Comparison of protein composition of microsomal fractions from control and chronically stimulated muscle was performed by immunoblot analysis and also by staining with Coomassie blue or the cationic carbocyanine dye Stains-all. Consistent with previous experiments, a greatly reduced density was observed for the fast-twitch isozyme of Ca(2+)-ATPase, while the expression of the slow-twitch Ca(2+)-ATPase was found to be greatly enhanced. Components of the sarcolemma (Na+/K(+)-ATPase, dystrophin-glycoprotein complex) and the free sarcoplasmic reticulum (Ca(2+)-binding protein sarcalumenin and a 53-kDa glycoprotein) were not affected by chronic stimulation. The relative abundance of calsequestrin was slightly reduced in transformed skeletal muscle. However, the expression of the ryanodine receptor/Ca(Ca2+)-release channel from junctional sarcoplasmic reticulum and the transverse tubular dihydropyridine-sensitive Ca2+ channel, as well as two junctional sarcoplasmic reticulum proteins of 90 kDa and 94 kDa, was greatly suppressed in transformed muscle. Thus, the expression of the major protein components of the triad junction involved in excitation-contraction coupling is suppressed, while the expression of other muscle membrane proteins is not affected in chronically stimulated muscle.  相似文献   

15.
The role of mitochondrial Ca2+ transport in regulating intracellular Ca2+ signaling and mitochondrial enzymes involved in energy metabolism is widely recognized in many tissues. However, the ability of skeletal muscle mitochondria to sequester Ca2+ released from the sarcoplasmic reticulum (SR) during the muscle contraction-relaxation cycle is still disputed. To assess the functional cross-talk of Ca2+ between SR and mitochondria, we examined the mutual relationship connecting cytosolic and mitochondrial Ca2+ dynamics in permeabilized skeletal muscle fibers. Cytosolic and mitochondrial Ca2+ transients were recorded with digital photometry and confocal microscopy using fura-2 and mag-rhod-2, respectively. In the presence of 0.5 mM slow Ca2+ buffer (EGTA (ethylene glycolbis(2-aminoethylether)-N,N,N',N'-tetraacetic acid)), application of caffeine induced a synchronized increase in both cytosolic and mitochondrial [Ca2+]. 5 mM fast Ca2+ buffer (BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)) nearly eliminated caffeine-induced increases in [Ca2+]c but only partially decreased the amplitude of mitochondrial Ca2+ transients. Confocal imaging revealed that in EGTA, almost all mitochondria picked up Ca2+ released from the SR by caffeine, whereas only about 70% of mitochondria did so in BAPTA. Taken together, these results indicated that a subpopulation of mitochondria is in close functional and presumably structural proximity to the SR, giving rise to subcellular microdomains in which Ca2+ has preferential access to the juxtaposed organelles.  相似文献   

16.
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites ‘mini’-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR.  相似文献   

17.
Ca(2+)-induced Ca(2+)-release (CICR)-the mechanism of cardiac excitation-contraction (EC) coupling-also contributes to skeletal muscle contraction; however, its properties are still poorly understood. CICR in skeletal muscle can be induced independently of direct, calcium-independent activation of sarcoplasmic reticulum Ca(2+) release, by reconstituting dysgenic myotubes with the cardiac Ca(2+) channel alpha(1C) (Ca(V)1.2) subunit. Ca(2+) influx through alpha(1C) provides the trigger for opening the sarcoplasmic reticulum Ca(2+) release channels. Here we show that also the Ca(2+) channel alpha(1D) isoform (Ca(V)1.3) can restore cardiac-type EC-coupling. GFP-alpha(1D) expressed in dysgenic myotubes is correctly targeted into the triad junctions and generates action potential-induced Ca(2+) transients with the same efficiency as GFP-alpha(1C) despite threefold smaller Ca(2+) currents. In contrast, GFP-alpha(1A), which generates large currents but is not targeted into triads, rarely restores action potential-induced Ca(2+) transients. Thus, cardiac-type EC-coupling in skeletal myotubes depends primarily on the correct targeting of the voltage-gated Ca(2+) channels and less on their current size. Combined patch-clamp/fluo-4 Ca(2+) recordings revealed that the induction of Ca(2+) transients and their maximal amplitudes are independent of the different current densities of GFP-alpha(1C) and GFP-alpha(1D). These properties of cardiac-type EC-coupling in dysgenic myotubes are consistent with a CICR mechanism under the control of local Ca(2+) gradients in the triad junctions.  相似文献   

18.
Muscle contraction requires ATP and Ca(2+) and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal ("longitudinal mitochondria") to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca(2+) release units (CRUs) or triads ("triadic mitochondria"). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca(2+) in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca(2+) accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca(2+) indicator. Interestingly, sustained mitochondrial Ca(2+) uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca(2+) sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU(-1)·min(-1)·100 μm(-2)) during postnatal development in direct linear correspondence (r(2) = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca(2+) spark suppression but does not significantly impact mitochondrial Ca(2+) uptake.  相似文献   

19.
1. KCl-induced depolarization resulted in a large stimulation of the 45Ca efflux from both cockroach skeletal muscle and rat ileal smooth muscle. 2. Caffeine (10 mM) induced a large stimulation of 45Ca efflux from skeletal muscle, but a fall in the efflux from ileal muscle, especially if the efflux was previously stimulated by KCl depolarization. 3. Caffeine inhibited calcium uptake by skeletal muscle mitochondria and sarcoplasmic reticulum, was without effect on ileal muscle mitochondria, but significantly increased caclium binding by ileal muscle membrane vesicular preparations. 4. The induction of contractures and stimulation of 45Ca efflux in skeletal muscle by caffeine are clearly related to inhibition of intracellular calcium binding by the sarcoplasmic reticulum and mitochondria. 5. The relaxation of ileal muscle by caffeine and the inhibition of fibre calcium efflux correlate well with caffeine enhancement of intracellular calcium binding. These experiments suggest that the membrane vesicular compartment may be the main agency centrally involved in fibre calcium regulation in this muscle during the contraction-relaxation cycle.  相似文献   

20.
Ca2+ ions play a pivotal role in a wide array of cellular processes ranging from fertilization to cell death. In skeletal muscle, a mechanical interaction between plasma membrane dihydropyridine receptors (DHPRs, L-type Ca2+ channels) and Ca2+ release channels (ryanodine receptors, RyR1s) of the sarcoplasmic reticulum orchestrates a complex, bi-directional Ca2+ signaling process that converts electrical impulses in the sarcolemma into myoplasmic Ca2+ transients during excitation-contraction coupling. Mutations in the genes that encode the two proteins that coordinate this electrochemical conversion process (the DHPR and RyR1) result in a variety of skeletal muscle disorders including malignant hyperthermia (MH), central core disease (CCD), multiminicore disease, nemaline rod myopathy, and hypokalemic periodic paralysis. Although RyR1 and DHPR disease mutations are thought to alter excitability and Ca2+ homeostasis in skeletal muscle, only recently has research begun to probe the molecular mechanisms by which these genetic defects lead to distinct clinical and histopathological manifestations. This review focuses on recent advances in determining the impact of MH and CCD mutations in RyR1 on muscle Ca2+ signaling and how these effects contribute to disease-specific aspects of these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号