首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidemiological studies show that increases in particulate air pollution (PM) are associated with increases in cardiopulmonary morbidity and mortality. However, the mechanism(s) underlying the cardiac effects of PM remain unknown. We used pharmacological strategies to determine whether oxidants are implicated in PM-dependent cardiac dysfunction and whether PM-induced increase in autonomic stimulation on the heart mediates cardiac oxidative stress and toxicity. Adult Sprague-Dawley rats were exposed to either intratracheal instillation of urban air particles (UAP 750 microg) or to inhalation of concentrated ambient particles (CAPs mass concentration 700+/-180 microg/m3) for 5 h. Oxidative stress and cardiac function were evaluated 30 min after UAP instillation or immediately after exposure to CAPs. Instillation of UAP led to significant increases in heart oxidants measured as organ chemiluminescence (UAP: 38+/-5 cps/cm2, sham: 10+/-1 cps/cm2) or thiobarbituric acid reactive substances (TBARS, UAP: 76+/-10, Sham 30+/-6 pmol/mg protein). Heart rate increased immediately after exposure (UAP: 390+/-20 bpm, sham: 350+/-10 bpm) and returned to basal levels over the next 30 min. Heart rate variability (SDNN) was unchanged immediately after exposure, but significantly increased during the recovery phase (UAP: 3.4+/-0.2, Sham: 2.4+/-0.3). To determine the role of ROS in the development of cardiac malfunction, rats were treated with 50 mg/kg N-acetylcysteine (NAC) 1 h prior to UAP instillation or CAPs inhalation. NAC prevented changes in heart rate and SDNN in UAP-exposed rats (340+/-8 and 2.9+/-0.3, respectively). To investigate the role of the autonomic nervous system in PM-induced oxidative stress, rats were given 5 mg/kg atenolol (beta-1 receptor antagonist), 0.30 mg/kg glycopyrrolate (muscarinic receptor antagonist) or saline immediately before exposure to CAPs aerosols. Both atenolol and glycopyrrolate effectively prevented CAPs-induced cardiac oxidative stress (CL(ATEN): 11+/-1 cps/cm2, CL(GLYCO): 10+/-1 cps/cm2, TBARS(ATEN): 40+/-6 pmol/mg protein, TBARS(GLYCO): 38+/-6 pmol/mg protein). These data indicate that PM exposure increases cardiac oxidants via autonomic signals and the resulting oxidative stress is associated with significant functional alterations in the heart.  相似文献   

2.
The renin-angiotensin system (RAS) plays an important role in the regulation of the cardiovascular system and the kallikrein-kinin system (KKS) appears to counteract most of the RAS effects. In this study the vagal and the sympathetic influences on the heart rate and the baroreflex control of the heart rate were evaluated in transgenics rats with human tissue kallikrein gene expression [TGR(hKLK1)], and transgenics rats with tissue renin overexpression [TGR(mREN2)27]. Heart rate was similar in all groups but mean arterial pressure was higher in mREN2 rats than in kallikrein and control rats (149+/-4 vs. 114+/-3 vs. 113+/-3 mm Hg, respectively). The intrinsic heart rate was lower in mREN2 rats than in kallikrein and control rats (324+/-5 vs. 331+/-3 vs. 343+/-7 bpm). The HR response to atropine was similar but the response to propranolol was higher in kallikrein rats than control group (61+/-7 vs. 60+/-9 vs. 38+/-7 bpm, respectively). The vagal tonus was lower in mREN2 than in SD and hKAL rats (18+/-3 vs. 40+/-6 vs. 35+/-6 bpm) whereas the sympathetic tonus was higher in kallikrein rats (118+/-7 vs. 96+/-1 vs. 81+/-9 bpm in the mREN2 and SD rats), respectively. Baroreflex sensitivity to bradycardic responses was attenuated in mREN2 rats (0.37+/-0.05 vs. 1.34+/-0.08 vs. 1.34+/-0,13 bpm/mm Hg) while the tachycardic responses were unchanged. The bradycardic responses to electrical stimulation of the vagal nerve were depressed in both renin and kallikrein rats (129+/-47 vs. 129+/-22 vs. 193+/-25 bpm in control group in response to 32 Hz). In conclusion: 1.The rats with overexpression of renin showed decreased intrinsic heart rate and impairment of vagal function, characterized by decreased vagal tonus, reduced response of HR to electrical stimulation of vagus nerve, and depressed reflex bradycardia provoked by increases of blood pressure. 2. The rats with overexpression of kallikrein showed an increase of sympathetic activity that regulates the heart rate, characterized by increased HR response to propranolol and increased sympathetic tonus, accompanied by decreased bradycardic responses to electrical vagal stimulation.  相似文献   

3.
Neurovascular responses to mental stress have been linked to several cardiovascular diseases, including hypertension. Mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and forearm vascular responses to mental stress are well documented in normotensive (NT) subjects, but responses in prehypertensive (PHT) subjects remain unclear. We tested the hypothesis that PHT would elicit a more dramatic increase of MAP during mental stress via augmented MSNA and blunted forearm vascular conductance (FVC). We examined 17 PHT (systolic 120-139 and/or diastolic 80-89 mmHg; 22 ± 1 yr) and 18 NT (systolic < 120 and diastolic < 80 mmHg; 23 ± 2 yr) subjects. Heart rate, MAP, MSNA, FVC, and calf vascular conductance were measured during 5 min of baseline and 5 min of mental stress (mental arithmetic). Mental stress increased MAP and FVC in both groups, but the increases in MAP were augmented (Δ 10 ± 1 vs. Δ14 ± 1 mmHg; P < 0.05), and the increases in FVC were blunted (Δ95 ± 14 vs. Δ37 ± 8%; P < 0.001) in PHT subjects. Mental stress elicited similar increases in MSNA (Δ7 ± 2 vs. Δ6 ± 2 bursts/min), heart rate (Δ21 ± 3 vs. Δ18 ± 3 beats/min), and calf vascular conductance (Δ29 ± 10 vs. Δ19 ± 5%) in NT and PHT subjects, respectively. In conclusion, mental stress elicits an augmented pressor response in PHT subjects. This augmentation appears to be associated with altered forearm vascular, but not MSNA, responses to mental stress.  相似文献   

4.
Some experimental procedures are associated with placement of animals in wire-bottom cages. The goal of this study was to evaluate stress-related physiological parameters (heart rate [HR], body temperature [BT], locomotor activity [LA], body weight [BW] and food consumption) in rats under two housing conditions, namely in wire-bottom cages and in bedding-bottom cages. Telemetry devices were surgically implanted in male Sprague-Dawley rats. HR, BT and LA were recorded at 5 min intervals. Analysis under each housing condition was performed from 16:00 to 08:00 h of the following day (4 h light, 12 h dark). During almost all of the light phase, the HR of rats housed in wire-bottom cages remained high (371 ± 35 bpm; mean ± SD; n = 6) and was significantly different from that of rats housed in bedding-bottom cages (340 ± 29 bpm; n = 6; P < 0.001; Student's t-test). In general, BT was similar under the two housing conditions. However, when rats were in wire-bottom cages, BT tended to fluctuate more widely during the dark phase. LA decreased when animals were housed in wire-bottom cages, in particular during the dark phase. Moreover, there was a significant difference with respect to the gain in BW: BW of rats housed in bedding-bottom cages increased 12 ± 2 g, whereas that of rats in wire-bottom cages decreased by 2 ± 3 g (P < 0.001). Our results demonstrate that housing rats in wire-bottom cages overnight leads to immediate alterations of HR, BW and LA, which might be related to a stress response.  相似文献   

5.
Caregiving by nonparents (alloparenting) and fathers is a defining aspect of human social behavior, yet this phenomenon is rare among mammals. Male prairie voles (Microtus ochrogaster) spontaneously exhibit high levels of alloparental care, even in the absence of reproductive experience. In previous studies, exposure to a pup was selectively associated with increased activity in oxytocin and vasopressin neurons along with decreased plasma corticosterone. In the present study, physiological, pharmacological and neuroanatomical methods were used to explore the autonomic and behavioral consequences of exposing male prairie voles to a pup. Reproductively naïve, adult male prairie voles were implanted with radiotransmitters used for recording ECG, temperature and activity. Males responded with a sustained increase in heart-rate during pup exposure. This prolonged increase in heart rate was not explained by novelty, locomotion or thermoregulation. Although heart rate was elevated during pup exposure, respiratory sinus arrhythmia (RSA) did not differ between these males and males exposed to control stimuli indicating that vagal inhibition of the heart was maintained. Blockade of beta-adrenergic receptors with atenolol abolished the pup-induced heart rate increase, implicating sympathetic activity in the pup-induced increase in heart rate. Blockade of vagal input to the heart delayed the males’ approach to the pup. Increased activity in brainstem autonomic regulatory nuclei was also observed in males exposed to pups. Together, these findings suggest that exposure to a pup activates both vagal and sympathetic systems. This unique physiological state (i.e. increased sympathetic excitation of the heart, while maintaining some vagal cardiac tone) associated with male caregiving behavior may allow males to both nurture and protect infants.  相似文献   

6.
Premenopausal women have a lower risk of cardiovascular disease (CVD) compared with men of a similar age. Furthermore, the regulation of factors that influence CVD appears to differ between the sexes, including control of the autonomic nervous system (ANS) and the renin-angiotensin system. We examined the cardiac ANS response to angiotensin II (Ang II) challenge in healthy subjects to determine whether differences in women and men exist. Thirty-six healthy subjects (21 women, 15 men, age 38 ± 2 years) were studied in a high-salt balance. Heart-rate variability (HRV) was calculated by spectral power analysis [low-frequency (LF) sympathetic modulation, high-frequency (HF) parasympathetic/vagal modulation, and LF:HF as a measure of overall ANS balance]. HRV was assessed at baseline and in response to graded Ang II infusions (3 ng·kg(-1)·min(-1) × 30 min; 6 ng·kg(-1)·min(-1) × 30 min). Cardiac ANS tone did not change significantly in women after each Ang II dose [3 ng·kg(-1)·min(-1) mean change (Δ)LF:HF (mean ± SE) 0.5 ± 0.3, P = 0.8, vs. baseline; 6 ng·kg(-1)·min(-1) ΔLF:HF (mean ± SE) 0.5 ± 0.4, P = 0.4, vs. baseline], whereas men exhibited an unfavorable shift in overall cardiac ANS activity in response to Ang II (ΔLF:HF 2.6 ± 0.2, P = 0.01, vs. baseline; P = 0.02 vs. female response). This imbalance in sympathovagal tone appeared to be largely driven by a withdrawal in cardioprotective vagal activity in response to Ang II challenge [ΔHF normalized units (nu), -5.8 ± 2.9, P = 0.01, vs. baseline; P = 0.006 vs. women] rather than an increase in sympathetic activity (ΔLF nu, -4.5 ± 5.7, P = 0.3, vs. baseline; P = 0.5 vs. women). Premenopausal women maintain cardiac ANS tone in response to Ang II challenge, whereas similarly aged men exhibit an unfavorable shift in cardiovagal activity. Understanding the role of gender in ANS modulation may help guide risk-reduction strategies in high-risk CVD populations.  相似文献   

7.
The present study investigated whether baroreflex control of autonomic function is impaired when there is a deficiency in NO production and the role of adrenergic and cholinergic mechanisms in mediating reflex responses. Electrical stimulation of the aortic depressor nerve in conscious normotensive and nitro-l-arginine methyl ester (L-NAME)-induced hypertensive rats was applied before and after administration of methylatropine, atenolol, and prazosin alone or in combination. The hypotensive response to progressive electrical stimulation (5 to 90 Hz) was greater in hypertensive (-27 ± 2 to -64 ± 3 mmHg) than in normotensive rats (-17 ± 1 to -46 ± 2 mmHg), whereas the bradycardic response was similar in both groups (-34 ± 5 to -92 ± 9 and -21 ± 2 to -79 ± 7 beats/min, respectively). Methylatropine and atenolol showed no effect in the hypotensive response in either group. Methylatropine blunted the bradycardic response in both groups, whereas atenolol attenuated only in hypertensive rats. Prazosin blunted the hypotensive response in both normotensive (43%) and hypertensive rats (53%) but did not affect the bradycardic response in either group. Prazosin plus angiotensin II, used to restore basal arterial pressure, provided hemodynamic responses similar to those of prazosin alone. The triple pharmacological blockade abolished the bradycardic response in both groups but displayed similar residual hypotensive response in hypertensive (-13 ± 2 to -27 ± 2 mmHg) and normotensive rats (-10 ± 1 to -25 ± 3 mmHg). In conclusion, electrical stimulation produced a well-preserved baroreflex-mediated decrease in arterial pressure and heart rate in conscious l-NAME-induced hypertensive rats. Moreover, withdrawal of the sympathetic drive played a role in the reflex bradycardia only in hypertensive rats. The residual fall in pressure after the triple pharmacological blockade suggests the involvement of a vasodilatory mechanism unrelated to NO or deactivation of α(1)-adrenergic receptor.  相似文献   

8.
Exercise training changes autonomic cardiovascular balance in mice.   总被引:1,自引:0,他引:1  
Experiments were performed to investigate the influence of exercise training on cardiovascular function in mice. Heart rate, arterial pressure, baroreflex sensitivity, and autonomic control of heart rate were measured in conscious, unrestrained male C57/6J sedentary (n = 8) and trained mice (n = 8). The exercise training protocol used a treadmill (1 h/day; 5 days/wk for 4 wk). Baroreflex sensitivity was evaluated by the tachycardic and bradycardic responses induced by sodium nitroprusside and phenylephrine, respectively. Autonomic control of heart rate and intrinsic heart rate were determined by use of methylatropine and propranolol. Resting bradycardia was observed in trained mice compared with sedentary animals [485 +/- 9 vs. 612 +/- 5 beats/min (bpm)], whereas mean arterial pressure was not different between the groups (106 +/- 2 vs. 108 +/- 3 mmHg). Baroreflex-mediated tachycardia was significantly enhanced in the trained group (6.97 +/- 0.97 vs. 1.6 +/- 0.21 bpm/mmHg, trained vs. sedentary), whereas baroreflex-mediated bradycardia was not altered by training. The tachycardia induced by methylatropine was significantly increased in trained animals (139 +/- 12 vs. 40 +/- 9 bpm, trained vs. sedentary), whereas the propranolol effect was significantly reduced in the trained group (49 +/- 11 vs. 97 +/- 11 bpm, trained vs. sedentary). Intrinsic heart rate was similar between groups. In conclusion, dynamic exercise training in mice induced a resting bradycardia and an improvement in baroreflex-mediated tachycardia. These changes are likely related to an increased vagal and decreased sympathetic tone, similar to the exercise response observed in humans.  相似文献   

9.
It is well established that GABAergic inputs to the paraventricular nucleus of the hypothalamus (PVN) tonically suppress heart rate and the activity of several sympathetic nerves. However, whether GABA similarly inhibits PVN control of baroreflex function has not been previously investigated. To test this hypothesis, it was determined whether microinjection of the GABA(A) antagonist, bicuculline, into the PVN enhances the baroreflex in anesthetized female virgin rats. In addition, because GABAergic inhibition of PVN preautonomic neurons is decreased during pregnancy, it was also determined whether the effects of PVN bicuculline administration on baroreflex function were less in pregnant animals. In virgin rats, PVN microinjection of bicuculline increased (P < 0.05) baroreflex gain and maximum levels of heart rate (gain, from 1.6 ± 0.6 to 3.8 ± 1.3 bpm/mmHg; maximum, from 406 ± 18 to 475 ± 14 bpm) and of lumbar sympathetic nerve activity (gain from 2.6 ± 0.7 to 4.8 ± 1.6%/mmHg; maximum, 149 ± 32 to 273 ± 48%), indicating that PVN GABA normally suppresses baroreflex function. Pregnancy decreased heart rate baroreflex gain (pregnant, 0.9 ± 0.3 bpm/mmHg; virgin, 1.9 ± 0.2 bpm/mmHg; P < 0.05). Following PVN bicuculline administration in pregnant rats, smaller (P < 0.01) increments in baroreflex gain (pregnant, 0.6 ± 0.1 bpm/mmHg; virgin, 2.4 ± 0.9 bpm/mmHg) and maximum (pregnant, 33 ± 7 bpm; virgin, 75 ± 12 bpm; P < 0.05) were produced. Collectively, these data suggest that the PVN normally inhibits the baroreflex via tonic GABAergic inputs and that this inhibition is less during pregnancy.  相似文献   

10.
The objective of the present study was to evaluate the baroreflex and the autonomic control of heart rate (HR) in renovascular hypertensive mice. Experiments were carried out in conscious C57BL/6 (n = 16) mice 28 days after a 2-kidney 1-clip procedure (2K1C mice) or a sham operation (sham mice). Baroreflex sensitivity was evaluated by measuring changes in heart rate (HR) in response to increases or decreases in mean arterial pressure (MAP) induced by phenylephrine or sodium nitroprusside. Cardiac autonomic tone was determined by use of atropine and atenolol. Basal HR and MAP were significantly higher in 2K1C mice than in sham mice. The reflex tachycardia induced by decreases in MAP was greatly attenuated in 2K1C mice compared with sham mice. Consequently, the baroreflex sensitivity was greatly decreased (2.2 +/- 0.4 vs. 4.4 +/- 0.3 beats x min(-1) x mmHg(-1)) in hypertensive mice compared with sham mice. The reflex bradycardia induced by increases in MAP and the baroreflex sensitivity were similar in both groups. Evaluation of autonomic control of HR showed an increased sympathetic tone and a tendency to a decreased vagal tone in 2K1C mice compared with that in sham mice. 2K1C hypertension in mice is accompanied by resting tachycardia, increased predominance of the cardiac sympathetic tone over the cardiac vagal tone, and impairment of baroreflex sensitivity.  相似文献   

11.
12.
Personality characteristics, e.g. aggressiveness, have long been associated with an increased risk of cardiac disease. However, the underlying mechanisms remain unclear. In this study we used a rodent model for characterizing cardiac autonomic modulation in rats that differ widely in their level of aggressive behavior. To reach this goal, high-aggressive (HA, n = 10) and non-aggressive (NA, n = 10) rats were selected from a population (n = 121) of adult male Wild-type Groningen rats on the basis of their latency time to attack (ALT, s) a male intruder in a resident-intruder test lasting 600 s. In order to obtain information on their cardiac autonomic modulation, ECG recordings were subsequently obtained via radiotelemetry at rest, during stressful stimuli and under autonomic pharmacological manipulations, and analyzed by means of time- and frequency-domain indexes of heart rate variability. During resting conditions, HA rats (ALT<90 s) displayed reduced heart rate variability, mostly in terms of lower vagal modulation compared to NA rats (ALT>600 s). Exposure to stressful stimuli (i.e. restraint and psychosocial stress) provoked similar tachycardic responses between the two groups. However, under stress conditions HA rats displayed a reduced vagal antagonism and an increased incidence of tachyarrhythmias compared to NA rats. In addition, beta-adrenergic pharmacological stimulation induced a much larger incidence of ventricular tachyarrhythmias in HA rats compared to NA counterparts. These findings are consistent with the view that high levels of aggressive behavior in rats are associated to signs of cardiac autonomic impairment and increased arrhythmogenic susceptibility that may predict vulnerability to cardiac morbidity and mortality.  相似文献   

13.
The analysis of heart rate in the frequency domain has become increasingly important in physiological studies, and supports the use of heart rate variability as an index of autonomic cardiovascular control. A new index, the instant centre frequency (ICF) has been proposed as a global index of the instantaneous relationship between sympathetic and vagal modulation. The aim of this study was to assess ICF, RR intervals, and heart rate variability measures as indices of sympathovagal balance during a pharmacological blockade of the autonomic nervous system in normotensive rats. RR intervals and arterial blood pressure of 10 conscious Wistar rats equipped with telemetry probes, were evaluated before, during, and after injection of: (1) saline (100 microl kg(-1) i.v.); (2) phentolamine (5 mg kg(-1) i.v.); (3) atropine methyl nitrate (0.5 mg kg(-1) i.v.); and (4) atenolol (1 mg kg(-1) i.v.). RR interval series were analysed by the smoothed pseudo-Wigner-Ville distribution. A general linearised model was used to evaluate the parameters. ICF was calculated in the same way as the peak power frequency by use of the first moment of instant spectrum. We calculated the ICF of the whole spectrum (ICF(T)), ICF in high frequency (ICF(H)) and ICF in low frequency (ICF(L)). The RR intervals and ICF indexes varied similarly and presented the lowest coefficient of variation among animals exposed to the same autonomic conditions. ICF(T)-ICF(L) and ICF(H)-ICF(T) were strongly correlated with normalised HF and normalised LF. In normotensive rats, RR intervals and ICF indices may reliably capture the effects of the sympathetic and parasympathetic nervous system on the sinus node.  相似文献   

14.
We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.  相似文献   

15.
Oxytocin (OT) has been implicated in the cardiovascular responses to exercise, stress, and baroreflex adjustments. Studies were conducted to determine the effect of genetic manipulation of the OT gene on blood pressure (BP), heart rate (HR), and autonomic/baroreflex function. OT knockout (OTKO -/-) and control +/+ mice were prepared with chronic arterial catheters. OTKO -/- mice exhibited a mild hypotension (102 +/- 3 vs. 110 +/- 3 mmHg). Sympathetic and vagal tone were tested using beta(1)-adrenergic and cholinergic blockade (atenolol and atropine). Magnitude of sympathetic and vagal tone to the heart and periphery was not significantly different between groups. However, there was an upward shift of sympathetic tone to higher HR values in OTKO -/- mice. This displacement combined with unchanged basal HR led to larger responses to cholinergic blockade (+77 +/- 25 vs. +5 +/- 15 beats/min, OTKO -/- vs. control +/+ group). There was also an increase in baroreflex gain (-13.1 +/- 2.5 vs. -4.1 +/- 1.2 beats x min(-1) x mmHg(-1), OTKO -/- vs. control +/+ group) over a smaller BP range. Results show that OTKO -/- mice are characterized by 1) hypotension, suggesting that OT is involved in tonic BP maintenance; 2) enhanced baroreflex gain over a small BP range, suggesting that OT extends the functional range of arterial baroreceptor reflex; and 3) shift in autonomic balance, indicating that OT reduces the sympathetic reserve.  相似文献   

16.
The Asian swamp eel (Monopterus albus) is an air-breathing teleost with very reduced gills that uses the buccal cavity for air-breathing. Here we characterise the cardiovascular changes associated with the intermittent breathing pattern in M. albus and we study the autonomic control of the heart during water- and air-breathing. The shift from water- to air-breathing was associated with a rise in heart rate from 27.7 ± 1.6 to 41.4 ± 2.6 min(-1) and an increase in cardiac output from 23.1 ± 3.0 to 58.7 ± 6.5 mLmin(-1)kg(-1), while mean systemic blood pressure did not change (39.0 ± 3.5 and 46.4 ± 1.3 cmH(2)O). The autonomic control of the heart during water- and air-breathing was revealed by infusion of the β-adrenergic antagonist propranolol and muscarinic antagonist atropine (3 mgkg(-1)) in eels instrumented with an arterial catheter. Inhibition of the sympathetic and parasympathetic innervations of the heart revealed a strong vagal tone on the heart of water-breathing eels and that the tachycardia during air-breathing is primarily mediated by withdrawal of cholinergic tone.  相似文献   

17.
The mechanism(s) for post-bed rest (BR) orthostatic intolerance is equivocal. The vestibulosympathetic reflex contributes to postural blood pressure regulation. It was hypothesized that muscle sympathetic nerve responses to otolith stimulation would be attenuated by prolonged head-down BR. Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and peripheral vascular conductance were measured during head-down rotation (HDR; otolith organ stimulation) in the prone posture before and after short-duration (24 h; n = 22) and prolonged (36 ± 1 day; n = 8) BR. Head-up tilt at 80° was performed to assess orthostatic tolerance. After short-duration BR, MSNA responses to HDR were preserved (Δ5 ± 1 bursts/min, Δ53 ± 13% burst frequency, Δ65 ± 13% total activity; P < 0.001). After prolonged BR, MSNA responses to HDR were attenuated ~50%. MSNA increased by Δ8 ± 2 vs. Δ3 ± 2 bursts/min and Δ83 ± 12 vs. Δ34 ± 22% total activity during HDR before and after prolonged BR, respectively. Moreover, these results were observed in three subjects tested again after 75 ± 1 days of BR. This reduction in MSNA responses to otolith organ stimulation at 5 wk occurred with reductions in head-up tilt duration. These results indicate that prolonged BR (~5 wk) unlike short-term BR (24 h) attenuates the vestibulosympathetic reflex and possibly contributes to orthostatic intolerance following BR in humans. These results suggest a novel mechanism in the development of orthostatic intolerance in humans.  相似文献   

18.
Epicardial fat (EF) is an active ectopic fat depot, which has been associated with coronary atherosclerosis, and which could early influence endothelial function. We thus investigated the relationship between EF and endothelium-dependent vasoreactivity of the coronary microcirculation, in highly selected healthy volunteers. Myocardial blood flow (MBF) was determined by measuring coronary sinus flow with velocity-encoded cine magnetic resonance imaging (MRI) at 3T. We measured MBF at baseline and in response to sympathetic stimulation by cold pressor testing (CPT) in 30 healthy volunteers with normal left ventricular (LV) function (age 22 ± 4 years, BMI = 21.3 ± 2.8 kg/m(2)). EF volume was volumetrically assessed by manual delineation on short-axis views. CPT was applied by immersing one foot in ice water for 4 min. Mean EF volume was 56 ± 26 ml and mean LV mass 100 ± 28 g. CPT significantly increased heart rate (HR) by 32 ± 19%, systolic blood pressure by 14 ± 10%, and rate-pressure product by 45 ± 25%, P < 0.0001. The increase in HR, reflecting sympathetic stimulation, was not influenced by sex, age or EF volume. CPT induced a decrease in coronary vascular resistance (135 ± 72 vs. 100 ± 42 mm Hg.ml(-1).min.g, P = 0.0006), and a significant increase in MBF (0.81 ± 0.37 vs. 1.24 ± 0.56 ml.min(-1).g(-1), P < 0.0001). Interestingly, we found a significant negative correlation between EF volume and ΔMBF (r= - 0.40, P = 0.03), which remained significant after adjusting for ΔHR. ΔMBF was also associated with adiponectin (r = 0.41, P = 0.046), but not with waist circumference, BMI, C-reactive protein, lipid or glycemic parameters. In multivariate analysis, adiponectin and EF volume remained both independently associated with ΔMBF. A high EF amount is associated with a lower coronary microvascular response, suggesting that EF could early influence endothelial function.  相似文献   

19.
In the denervated mammalian heart a change in right atrial pressure will still alter heart rate (intrinsic rate response, IRR). We have examined the IRR in isolated right atria of the guinea-pig maintained in oxygenated Krebs-Henseleit solution at 37 degrees C, to compare with and extend studies in other species, and to determine whether the guinea-pig is a suitable model for electrophysiological studies of the IRR. Baseline diastolic transmural pressure was set at 2 mmHg. A 6-mmHg increase in right atrial pressure (RAP) caused an increase in atrial rate that reached a steady value of 15 min(-1) after 1-2 min. This response was enhanced by carbamylcholine and attenuated by isoprenaline. The influence of RAP on the rate response to vagal stimulation was examined. With RAP set at 8 mmHg, the reduction in atrial rate following vagal stimulation was 72+/-5% of that at 2 mmHg (n=6, mean+/-S.E., P<0.005). Continuous vagal stimulation produced a sustained bradycardia, and the effect of this bradycardia on the IRR was examined. When atrial rate was reduced 6% by vagal stimulation, the IRR was augmented to 202+/-21% of the control (n=6, P<0.005). This augmentation was larger (P<0.05) than that seen when atrial rate was reduced 8% by carbamylcholine (130+/-8% of control; n=7, P<0.05). Overall, the IRR in the guinea-pig is similar to that in the rabbit, and shows similar interactions with the autonomic nervous system.  相似文献   

20.
We investigated the contribution of tetrodotoxin (TTX)-resistant sodium channels to the augmented exercise pressor reflex observed in decerebrated rats with femoral artery ligation. The pressor responses to static contraction, to tendon stretch, and to electrical stimulation of the tibial nerve were compared before and after blocking TTX-sensitive sodium channels on the L3-L6 dorsal roots of rats whose hindlimbs were freely perfused and rats whose femoral arteries were ligated 72 h before the start of the experiment. In the freely perfused group (n=9), pressor (Δ22±4 mmHg) and cardioaccelerator (Δ32±6 beats/min) responses to contraction were attenuated by 1 μM TTX (Δ4±1 mmHg, P<0.05 and Δ17±4 beats/min, P<0.05, respectively). In the 72 h ligated group (n=9), the augmented pressor response to contraction (32±4 mmHg) was also attenuated by 1 μM TTX (Δ8±2 mmHg, P<0.05). The cardioaccelerator response to contraction was not significantly attenuated in these rats. In addition, TTX suppressed the pressor response to tendon stretch in both groups of rats. Electrical stimulation of the tibial nerve evoked similar pressor responses between the two groups (freely perfused: Δ74±9 mmHg and 72 h ligated: Δ78±5 mmHg). TTX attenuated the pressor response to the tibial nerve stimulation by about one-half in both groups. Application of the TTX-resistant sodium channel blocker A-803467 (1 μM) with TTX (1 μM) did not block the pressor response to tibial nerve stimulation to any greater extent than did application of TTX (1 μM) alone. Although the contribution of TTX-resistant sodium channels to the augmented exercise pressor reflex may be slightly increased in rats with chronic femoral artery ligation, TTX-resistant sodium channels on dorsal roots do not play a major role in the augmented exercise pressor reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号