首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FimH is a mannose-specific adhesin located on the tip of type 1 fimbriae of Escherichia coli that is capable of mediating shear-enhanced bacterial adhesion. FimH consists of a fimbria-associated pilin domain and a mannose-binding lectin domain, with the binding pocket positioned opposite the interdomain interface. By using the yeast two-hybrid system, purified lectin and pilin domains, and docking simulations, we show here that the FimH domains interact with one another. The affinity for mannose is greatly enhanced (up to 300-fold) in FimH variants in which the interdomain interaction is disrupted by structural mutations in either the pilin or lectin domains. Also, affinity to mannose is dramatically enhanced in isolated lectin domains or in FimH complexed with the chaperone molecule that is wedged between the domains. Furthermore, FimH with native structure mediates weak binding at low shear stress but shifts to strong binding at high shear, whereas FimH with disrupted interdomain contacts (or the isolated lectin domain) mediates strong binding to mannose-coated surfaces even under low shear. We propose that interactions between lectin and pilin domains decrease the affinity of the mannose-binding pocket via an allosteric mechanism. We further suggest that mechanical force at high shear stress separates the two domains, allowing the lectin domain to switch from a low affinity to a high affinity state. This shift provides a mechanism for FimH-mediated shear-enhanced adhesion by enabling the adhesin to form catch bond-like interactions that are longer lived at high tensile force.  相似文献   

2.
FimH is the adhesive subunit of type 1 fimbriae of the Escherichia coli that is composed of a mannose-binding lectin domain and a fimbria-incorporating pilin domain. FimH is able to interact with mannosylated surface via a shear-enhanced catch bond mechanism. We show that the FimH lectin domain possesses a ligand-induced binding site (LIBS), a type of allosterically regulated epitopes characterized in integrins. Analogous to integrins, in FimH the LIBS epitope becomes exposed in the presence of the ligand (or "activating" mutations) and is located far from the ligand-binding site, close to the interdomain interface. Also, the antibody binding to the LIBS shifts adhesin from the low to high affinity state. Binding of streptavidin to the biotinylated residue within the LIBS also locks FimH in the high affinity state, suggesting that the allosteric perturbations in FimH are sustained by the interdomain wedging. In the presence of antibodies, the strength of bacterial adhesion to mannose is increased similar to the increase observed under shear force, suggesting the same allosteric mechanism, a shift in the interdomain configuration. Thus, an integrin-like allosteric link between the binding pocket and the interdomain conformation can serve as the basis for the catch bond property of FimH and, possibly, other adhesive proteins.  相似文献   

3.
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.  相似文献   

4.
There is increasing evidence that the catch bond mechanism, where binding becomes stronger under tensile force, is a common property among non-covalent interactions between biological molecules that are exposed to mechanical force in vivo. Here, by using the multi-protein tip complex of the mannose-binding type 1 fimbriae of Escherichia coli, we show how the entire quaternary structure of the adhesive organella is adapted to facilitate binding under mechanically dynamic conditions induced by flow. The fimbrial tip mediates shear-dependent adhesion of bacteria to uroepithelial cells and demonstrates force-enhanced interaction with mannose in single molecule force spectroscopy experiments. The mannose-binding, lectin domain of the apex-positioned adhesive protein FimH is docked to the anchoring pilin domain in a distinct hooked manner. The hooked conformation is highly stable in molecular dynamics simulations under no force conditions but permits an easy separation of the domains upon application of an external tensile force, allowing the lectin domain to switch from a low- to a high-affinity state. The conformation between the FimH pilin domain and the following FimG subunit of the tip is open and stable even when tensile force is applied, providing an extended lever arm for the hook unhinging under shear. Finally, the conformation between FimG and FimF subunits is highly flexible even in the absence of tensile force, conferring to the FimH adhesin an exploratory function and high binding rates. The fimbrial tip of type 1 Escherichia coli is optimized to have a dual functionality: flexible exploration and force sensing. Comparison to other structures suggests that this property is common in unrelated bacterial and eukaryotic adhesive complexes that must function in dynamic conditions.  相似文献   

5.
FimH is a bacterial adhesin protein located at the tip of Escherichia coli fimbria that functions to adhere bacteria to host cells. Thus, FimH is a critical factor in bacterial infections such as urinary tract infections and is of interest in drug development. It is also involved in vaccine development and as a model for understanding shear-enhanced catch bond cell adhesion. To date, over 60 structures have been deposited in the Protein Data Bank showing interactions between FimH and mannose ligands, potential inhibitors, and other fimbrial proteins. In addition to providing insights about ligand recognition and fimbrial assembly, these structures provide insights into conformational changes in the two domains of FimH that are critical for its function. To gain further insights into these structural changes, we have superposed FimH's mannose binding lectin domain in all these structures and categorized the structures into five groups of lectin domain conformers using RMSD as a metric. Many structures also include the pilin domain, which anchors FimH to the fimbriae and regulates the conformation and function of the lectin domain. For these structures, we have also compared the relative orientations of the two domains. These structural analyses enhance our understanding of the conformational changes associated with FimH ligand binding and domain-domain interactions, including its catch bond behavior through allosteric action of force in bacterial adhesion.  相似文献   

6.
The bacterial adhesive protein, FimH, is the most common adhesin of Escherichia coli and mediates weak adhesion at low flow but strong adhesion at high flow. There is evidence that this occurs because FimH forms catch bonds, defined as bonds that are strengthened by tensile mechanical force. Here, we applied force to single isolated FimH bonds with an atomic force microscope in order to test this directly. If force was loaded slowly, most of the bonds broke up at low force (<60 piconewtons of rupture force). However, when force was loaded rapidly, all bonds survived until much higher force (140-180 piconewtons of rupture force), behavior that indicates a catch bond. Structural mutations or pretreatment with a monoclonal antibody, both of which allosterically stabilize a high affinity conformation of FimH, cause all bonds to survive until high forces regardless of the rate at which force is applied. Pretreatment of FimH bonds with intermediate force has the same strengthening effect on the bonds. This demonstrates that FimH forms catch bonds and that tensile force induces an allosteric switch to the high affinity, strong binding conformation of the adhesin. The catch bond behavior of FimH, the amount of force needed to regulate FimH, and the allosteric mechanism all provide insight into how bacteria bind and form biofilms in fluid flow. Additionally, these observations may provide a means for designing antiadhesive mechanisms.  相似文献   

7.
The F17-G adhesin at the tip of flexible F17 fimbriae of enterotoxigenic Escherichia coli mediates binding to N-acetyl-beta-D-glucosamine-presenting receptors on the microvilli of the intestinal epithelium of ruminants. We report the 1.7 A resolution crystal structure of the lectin domain of F17-G, both free and in complex with N-acetylglucosamine. The monosaccharide is bound on the side of the ellipsoid-shaped protein in a conserved site around which all natural variations of F17-G are clustered. A model is proposed for the interaction between F17-fimbriated E. coli and microvilli with enhanced affinity compared with the binding constant we determined for F17-G binding to N-acetylglucosamine (0.85 mM-1). Unexpectedly, the F17-G structure reveals that the lectin domains of the F17-G, PapGII and FimH fimbrial adhesins all share the immunoglobulin-like fold of the structural components (pilins) of their fimbriae, despite lack of any sequence identity. Fold comparisons with pilin and chaperone structures of the chaperone/usher pathway highlight the central role of the C-terminal beta-strand G of the immunoglobulin-like fold and provides new insights into pilus assembly, function and adhesion.  相似文献   

8.
Valency conversion in the type 1 fimbrial adhesin of Escherichia coli   总被引:1,自引:0,他引:1  
FimH protein is a lectin-like adhesive subunit of type 1, or mannose-sensitive, fimbriae that are found on the surface of most Escherichia coli strains. All naturally occurring FimH variants demonstrate a conserved mannotriose-specific (i.e. multivalent) binding. Here, we demonstrate that replacement of residues 185-279 within the FimH pilin domain with a corresponding segment of the type 1C fimbrial adhesin FocH leads to a loss of the multivalent mannotriose-specific binding property accompanied by the acquisition of a distinct monomannose-specific (i.e. monovalent) binding capability. Bacteria expressing the monovalent hybrid adhesins were capable of binding strongly to uroepithelial tissue culture cells and guinea pig erythrocytes. They could not, however, agglutinate yeast or bind human buccal cells -- functions readily accomplished by the E. coli-expressing mannotriose-specific FimH variants. Based on the relative potency of inhibiting compounds of different structures, the receptor binding site within monovalent FimH-FocH adhesin has an extended structure with an overall configuration similar to that within the multivalent FimH of natural origin. The monomannose-only specific phenotype could also be invoked by a single point mutation, E89K, located within the lectin domain of FimH, but distant from the receptor binding site. The structural alterations influence the receptor-binding valency of the FimH adhesin via distal effects on the combining pocket, obviously by affecting the FimH quaternary structure.  相似文献   

9.
The first step in the colonization of the human urinary tract by pathogenic Escherichia coli is the mannose-sensitive binding of FimH, the adhesin present at the tip of type 1 pili, to the bladder epithelium. We elucidated crystallographically the interactions of FimH with D-mannose. The unique site binding pocket occupied by D-mannose was probed using site-directed mutagenesis. All but one of the mutants examined had greatly diminished mannose-binding activity and had also lost the ability to bind human bladder cells. The binding activity of the mono-saccharide D-mannose was delineated from this of mannotriose (Man(alpha 1-3)[Man(alpha 1-6)]Man) by generating mutants that abolished D-mannose binding but retained mannotriose binding activity. Our structure/function analysis demonstrated that the binding of the monosaccharide alpha-D-mannose is the primary bladder cell receptor for uropathogenic E. coli and that this event requires a highly conserved FimH binding pocket. The residues in the FimH mannose-binding pocket were sequenced and found to be invariant in over 200 uropathogenic strains of E. coli. Only enterohaemorrhagic E. coli (EHEC) possess a sequence variation within the mannose-binding pocket of FimH, suggesting a naturally occurring mechanism of attenuation in EHEC bacteria that would prevent them from being targeted to the urinary tract.  相似文献   

10.
High shear enhances the adhesion of Escherichia coli bacteria binding to mannose coated surfaces via the adhesin FimH, raising the question as to whether FimH forms catch bonds that are stronger under tensile mechanical force. Here, we study the length of time that E. coli pause on mannosylated surfaces and report a double exponential decay in the duration of the pauses. This double exponential decay is unlike previous single molecule or whole cell data for other catch bonds, and indicates the existence of two distinct conformational states. We present a mathematical model, derived from the common notion of chemical allostery, which describes the lifetime of a catch bond in which mechanical force regulates the transitions between two conformational states that have different unbinding rates. The model explains these characteristics of the data: a double exponential decay, an increase in both the likelihood and lifetime of the high-binding state with shear stress, and a biphasic effect of force on detachment rates. The model parameters estimated from the data are consistent with the force-induced structural changes shown earlier in FimH. This strongly suggests that FimH forms allosteric catch bonds. The model advances our understanding of both catch bonds and the role of allostery in regulating protein activity.  相似文献   

11.
An elementary step in the assembly of adhesive type 1 pili of Escherichia coli is the folding of structural pilus subunits in the periplasm. The previously determined X-ray structure of the complex between the type 1 pilus adhesin FimH and the periplasmic pilus assembly chaperone FimC has shown that FimH consists of a N-terminal lectin domain and a C-terminal pilin domain, and that FimC exclusively interacts with the pilin domain. The pilin domain fold, which is common to all pilus subunits, is characterized by an incomplete beta-sheet that is completed by a donor strand from FimC in the FimC-FimH complex. This, together with unsuccessful attempts to refold isolated, urea-denatured FimH in vitro had suggested that folding of pilin domains strictly depends on sequence information provided by FimC. We have now analyzed in detail the folding of FimH and its two isolated domains in vitro. We find that not only the lectin domain, but also the pilin domain can fold autonomously and independently of FimC. However, the thermodynamic stability of the pilin domain is very low (8-10kJmol(-1)) so that a significant fraction of the domain is unfolded even in the absence of denaturant. This explains the high tendency of structural pilus subunits to aggregate non-specifically in the absence of stoichiometric amounts of FimC. Thus, pilus chaperones prevent non-specific aggregation of pilus subunits by native state stabilization after subunit folding.  相似文献   

12.
The bacterial adhesin FimH consists of an allosterically regulated mannose‐binding lectin domain and a covalently linked inhibitory pilin domain. Under normal conditions, the two domains are bound to each other, and FimH interacts weakly with mannose. However, under tensile force, the domains separate and the lectin domain undergoes conformational changes that strengthen its bond with mannose. Comparison of the crystallographic structures of the low and the high affinity state of the lectin domain reveals conformational changes mainly in the regulatory inter‐domain region, the mannose binding site and a large β sheet that connects the two distally located regions. Here, molecular dynamics simulations investigated how conformational changes are propagated within and between different regions of the lectin domain. It was found that the inter‐domain region moves towards the high affinity conformation as it becomes more compact and buries exposed hydrophobic surface after separation of the pilin domain. The mannose binding site was more rigid in the high affinity state, which prevented water penetration into the pocket. The large central β sheet demonstrated a soft spring‐like twisting. Its twisting motion was moderately correlated to fluctuations in both the regulatory and the binding region, whereas a weak correlation was seen in a direct comparison of these two distal sites. The results suggest a so called “population shift” model whereby binding of the lectin domain to either the pilin domain or mannose locks the β sheet in a rather twisted or flat conformation, stabilizing the low or the high affinity state, respectively. Proteins 2016; 84:990–1008. © 2016 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

13.
Cysteine bonds are found near the ligand-binding sites of a wide range of microbial adhesive proteins, including the FimH adhesin of Escherichia coli. We show here that removal of the cysteine bond in the mannose-binding domain of FimH did not affect FimH-mannose binding under static or low shear conditions (< or = 0.2 dyne cm(-2)). However, the adhesion level was substantially decreased under increased fluid flow. Under intermediate shear (2 dynes cm(-2)), the ON-rate of bacterial attachment was significantly decreased for disulphide-free mutants. Molecular dynamics simulations demonstrated that the lower ON-rate of cysteine bond-free FimH could be due to destabilization of the mannose-free binding pocket of FimH. In contrast, mutant and wild-type FimH had similar conformation when bound to mannose, explaining their similar binding strength to mannose under intermediate shear. The stabilizing effect of mannose on disulphide-free FimH was also confirmed by protection of the FimH from thermal and chemical inactivation in the presence of mannose. However, this stabilizing effect could not protect the integrity of FimH structure under high shear (> 20 dynes cm(-2)), where lack of the disulphide significantly increased adhesion OFF-rates. Thus, the cysteine bonds in bacterial adhesins could be adapted to enable bacteria to bind target surfaces under increased shear conditions.  相似文献   

14.
In this work we discover that a specific recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is essential for the biogenesis of type 1 pili in Escherichia coli. These filamentous organelles are assembled by the chaperone-usher pathway, in which binary complexes between fimbrial subunits and the periplasmic chaperone FimC are recognized by the outer membrane protein FimD (the usher). FimH adhesin initiates fimbriae polymerization and is the first subunit incorporated in the filament. Accordingly, FimD shows higher affinity for the FimC/FimH complex although the structural basis of this specificity is unknown. We have analysed the assembly into fimbria, and the interaction with FimD in vivo, of FimH variants in which the N-terminal lectin domain of FimH was deleted or substituted by different immunoglobulin (Ig) domains, or in which these Ig domains were fused to the N-terminus of full-length FimH. From these data, along with the analysis of a FimH mutant with a single amino acid change (G16D) in the N-terminal lectin domain, we conclude that the lectin domain of FimH is recognized by FimD usher as an essential step for type 1 pilus biogenesis.  相似文献   

15.
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha-D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (Kd = 0.15 microM) than mannose (Kd = 2.3 microM). Exploration of the binding affinities of alpha- d-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.  相似文献   

16.
Type 1 fimbriae of enterobacteria are heteropolymeric organelles of adhesion composed of FimH, a mannose-binding lectin, and a shaft composed primarily of FimA. We compared the binding activities of recombinant clones expressing type 1 fimbriae from Escherichia coli, Klebsiella pneumoniae, and Salmonella typhimurium for gut and uroepithelial cells and for various soluble mannosylated proteins. Each fimbria was characterized by its capacity to bind particular epithelial cells and to aggregate mannoproteins. However, when each respective FimH subunit was cloned and expressed in the absence of its shaft as a fusion protein with MalE, each FimH bound a wide range of mannose-containing compounds. In addition, we found that expression of FimH on a heterologous fimbrial shaft, e.g. K. pneumoniae FimH on the E. coli fimbrial shaft or vice versa, altered the binding specificity of FimH such that it closely resembled that of the native heterologous type 1 fimbriae. Furthermore, attachment to and invasion of bladder epithelial cells, which were mediated much better by native E. coli type 1 fimbriae compared with native K. pneumoniae type 1 fimbriae, were found to be dependent on the background of the fimbrial shaft (E. coli versus K. pneumoniae) rather than the background of the FimH expressed. Thus, the distinct binding specificities of different enterobacterial type 1 fimbriae cannot be ascribed solely to the primary structure of their respective FimH subunits, but are also modulated by the fimbrial shaft on which each FimH subunit is presented, possibly through conformational constraints imposed on FimH by the fimbrial shaft. The capacity of type 1 fimbrial shafts to modulate the tissue tropism of different enterobacterial species represents a novel function for these highly organized structures.  相似文献   

17.
The FimH protein is the adhesive subunit of Escherichia coli type 1 fimbriae. It mediates shear-dependent bacterial binding to monomannose (1M)-coated surfaces manifested by the existence of a shear threshold for binding, below which bacteria do not adhere. The 1M-specific shear-dependent binding of FimH is consistent with so-called catch bond interactions, whose lifetime is increased by tensile force. We show here that the oligosaccharide-specific interaction of FimH with another of its ligands, trimannose (3M), lacks a shear threshold for binding, since the number of bacteria binding under static conditions is higher than under any flow. However, similar to 1M, the binding strength of surface-interacting bacteria is enhanced by shear. Bacteria transition from rolling into firm stationary surface adhesion as the shear increases. The shear-enhanced bacterial binding on 3M is mediated by catch bond properties of the 1M-binding subsite within the extended oligosaccharide-binding pocket of FimH, since structural mutations in the putative force-responsive region and in the binding site affect 1M- and 3M-specific binding in an identical manner. A shear-dependent conversion of the adhesion mode is also exhibited by P-fimbriated E. coli adhering to digalactose surfaces.  相似文献   

18.
Type 1 fimbriae are assembled by the chaperone–usher pathway where periplasmic protein complexes formed between fimbrial subunits and the FimC chaperone are recruited by the outer membrane protein FimD (the usher) for their ordered polymerization and export. FimH adhesin initiates and stimulates type 1 fimbriae polymerization by interacting with FimD. Previously we showed that the N-terminal lectin domain of FimH (N-FimH) is necessary for binding of the adhesin to FimD. In this work, we have selected mutants in N-FimH that reduce the levels of adhesin and type 1 fimbriae displayed in Escherichia coli without altering the levels of FimH in the periplasm. The selected mutations are mostly concentrated in residues G15, N46 and D47. In contrast to other mutations isolated that simply affect binding of FimH to FimD (e.g. C3Y), these variants associate to FimD and alter its susceptibility to trypsin digestion similarly to wild-type FimH. Importantly, their mutant phenotype is rescued when FimD is activated in vivo by the coexpression of wild-type FimH. Altogether, these data indicate that residues G15, N46 and D47 play an important role following initial binding of FimH to FimD for efficient type 1 fimbriae polymerization by this outer membrane usher.  相似文献   

19.
The protein FimH is expressed by the majority of commensal and uropathogenic strains of Escherichia coli on the tips of type 1 fimbriae and mediates adhesion via a catch bond to its ligand mannose. Crystal structures of FimH show an allosteric conformational change, but it remains unclear whether all of the observed structural differences are part of the allosteric mechanism. Here we use the protein structural analysis tool RosettaDesign combined with human insight to identify and synthesize 10 mutations in four regions that we predicted would stabilize one of the conformations of that region. The function of each variant was characterized by measuring binding to the ligand mannose, whereas the allosteric state was determined using a conformation-specific monoclonal antibody. These studies demonstrated that each region investigated was indeed part of the FimH allosteric mechanism. However, the studies strongly suggested that some regions were more tightly coupled to mannose binding and others to antibody binding. In addition, we identified many FimH variants that appear locked in the low affinity state. Knowledge of regulatory sites outside the active and effector sites as well as the ability to make FimH variants locked in the low affinity state may be crucial to the future development of novel antiadhesive and antimicrobial therapies using allosteric regulation to inhibit FimH.  相似文献   

20.
Type-1 fimbriae are important virulence factors for the establishment of Escherichia coli urinary tract infections. Bacterial adhesion to the high-mannosylated uroplakin Ia glycoprotein receptors of bladder epithelium is mediated by the FimH adhesin. Previous studies have attributed differences in mannose-sensitive adhesion phenotypes between faecal and uropathogenic E. coli to sequence variation in the FimH receptor-binding domain. We find that FimH variants from uropathogenic, faecal and enterohaemorrhagic isolates express the same specificities and affinities for high-mannose structures. The only exceptions are FimHs from O157 strains that carry a mutation (Asn135Lys) in the mannose-binding pocket that abolishes all binding. A high-mannose microarray shows that all substructures are bound by FimH and that the largest oligomannose is not necessarily the best binder. Affinity measurements demonstrate a strong preference towards oligomannosides exposing Manalpha1-3Man at their non-reducing end. Binding is further enhanced by the beta1-4-linkage to GlcNAc, where binding is 100-fold better than that of alpha-d-mannose. Manalpha1-3Manbeta1-4GlcNAc, a major oligosaccharide present in the urine of alpha-mannosidosis patients, thus constitutes a well-defined FimH epitope. Differences in affinities for high-mannose structures are at least 10-fold larger than differences in numbers of adherent bacteria between faecal and uropathogenic strains. Our results imply that the carbohydrate expression profile of targeted host tissues and of natural inhibitors in urine, such as Tamm-Horsfall protein, are stronger determinants of adhesion than FimH variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号