首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vascular endothelial growth factor A (VEGF) is a crucial proangiogenic factor, which regulates blood vessel supply under physiologic and pathologic conditions. The VEGF mRNA 5′-untranslated region (5′-UTR) bears internal ribosome entry sites (IRES), which confer sustained VEGF mRNA translation under hypoxia when 5′-cap-dependent mRNA translation is inhibited. VEGF IRES-mediated initiation of translation requires the modulated interaction of trans-acting factors. To identify trans-acting factors that control VEGF mRNA translation under hypoxic conditions we established an in vitro translation system based on human adenocarcinoma cells (MCF-7). Cytoplasmic extracts of MCF-7 cells grown under hypoxia (1% oxygen) recapitulate VEGF IRES-mediated reporter mRNA translation. Employing the VEGF mRNA 5′-UTR and 3′-UTR in an RNA affinity approach we isolated interacting proteins from translational active MCF-7 extract prepared from cells grown under normoxia or hypoxia. Interestingly, mass spectrometry analysis identified the DEAD-box RNA helicase 6 (DDX6) that interacts with the VEGF mRNA 5′-UTR. Recombinant DDX6 inhibits VEGF IRES-mediated translation in normoxic MCF-7 extract. Under hypoxia the level of DDX6 declines, and its interaction with VEGF mRNA is diminished in vivo. Depletion of DDX6 by RNAi further promotes VEGF expression in MCF-7 cells. Increased secretion of VEGF from DDX6 knockdown cells positively affects vascular tube formation of human umbilical vein endothelial cells (HUVEC) in vitro. Our results indicate that the decrease of DDX6 under hypoxia contributes to the activation of VEGF expression and promotes its proangiogenic function.  相似文献   

3.

Background

The Down syndrome candidate region-1 gene (DSCR1, also known as RCAN1) is situated close to the Down Syndrome Critical Region (DSCR), which contains genes responsible for many features of Down syndrome. DSCR1 modulates calcineurin phosphatase activity, though its functional role is incompletely understood.

Methods

Here we investigated the role of DSCR1-1S isoform in IL-1 receptor (IL-1R)-mediated signaling by analyzing interaction between DSCR1-1S and the IL-1R pathway components Tollip, IRAK-1, and TRAF6.

Results

Co-immunoprecipitation analyses of HEK293 cells revealed that DSCR1-1S interacted with Tollip, an IRAK-1 inhibitor, leading to the dissociation of IRAK-1 from Tollip. Similarly, both DSCR1-1S and Tollip interacted with TRAF6, with DSCR1 reducing interaction between Tollip and TRAF6. DSCR1-1S also stimulated IL-1R-mediated signaling pathways, TAK1 activation, NF-κB transactivation, and IL-8 production, all downstream consequences of IL-1R activation.

General significance

Together, these results suggest that DSCR1-1S isoform positively modulates IL-1R-mediated signaling pathways by regulating Tollip/IRAK-1/TRAF6 complex formation.  相似文献   

4.
5.
6.
The poly(A)-binding protein (PABP), a key component of different ribonucleoprotein complexes, plays a crucial role in the control of mRNA translation rates, stability, and subcellular targeting. In this study we identify RING zinc finger protein Makorin 1 (MKRN1), a bona fide RNA-binding protein, as a binding partner of PABP that interacts with PABP in an RNA-independent manner. In rat brain, a so far uncharacterized short MKRN1 isoform, MKRN1-short, predominates and is detected in forebrain nerve cells. In neuronal dendrites, MKRN1-short co-localizes with PABP in granule-like structures, which are morphological correlates of sites of mRNA metabolism. Moreover, in primary rat neurons MKRN1-short associates with dendritically localized mRNAs. When tethered to a reporter mRNA, MKRN1-short significantly enhances reporter protein synthesis. Furthermore, after induction of synaptic plasticity via electrical stimulation of the perforant path in vivo, MKRN1-short specifically accumulates in the activated dendritic lamina, the middle molecular layer of the hippocampal dentate gyrus. Collectively, these data indicate that in mammalian neurons MKRN1-short interacts with PABP to locally control the translation of dendritic mRNAs at synapses.  相似文献   

7.
8.
Down-regulation of overabundant interleukin (IL)-8 present in cystic fibrosis (CF) airways could ease excessive neutrophil burden and its deleterious consequences for the lung. IL-8 production in airway epithelial cells, stimulated with e.g. inflammatory cytokines IL-1β and tumor necrosis factor (TNF)-α, is regulated by several signaling pathways including nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK). We previously demonstrated that the anti-inflammatory drugs dexamethasone and ibuprofen suppress NF-κB; however, only dexamethasone down-regulates cytokine-induced IL-8, highlighting the importance of non-NF-κB mechanisms. Here, we tested the hypothesis that down-regulation of cytokine-induced IL-8 requires modulation of the MAPK phosphatase (MKP)-1/p38 MAPK/mRNA stability pathway. The effects of dexamethasone (5 nm) and ibuprofen (480 μm) on this pathway and IL-8 were studied in CF (CFTE29o-, CFBE41o-) and non-CF (1HAEo-) airway epithelial cells. We observed that dexamethasone, but not ibuprofen, destabilizes IL-8 mRNA and up-regulates MKP-1 mRNA. Further, siRNA silencing of MKP-1, via p38 MAPK, leads to IL-8 overproduction and diminishes the anti-IL-8 potential of dexamethasone. However, MKP-1 overexpression does not significantly alter IL-8 production. By contrast, direct inhibition of p38 MAPK (inhibitor SB203580) efficiently suppresses IL-8 with potency comparable with dexamethasone. Similar to dexamethasone, SB203580 decreases IL-8 mRNA stability. Dexamethasone does not affect p38 MAPK activation, which excludes its effects upstream of p38 MAPK. In conclusion, normal levels of MKP-1 are necessary for a full anti-IL-8 potential of pharmacological agents; however, efficient pharmacological down-regulation of cytokine-induced IL-8 also requires direct effects on p38 MAPK and mRNA stability independently of MKP-1.  相似文献   

9.
10.
Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229.  相似文献   

11.
12.
We previously reported that interleukin-1 (IL-1), a potent bone resorptive cytokine, stimulates the synthesis of interleukin-6 (IL-6) via activation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that AMP-activated protein kinase (AMPK) negatively regulates the IL-1-induced IL-6 synthesis through the inhibitor of κB (IκB)/nuclear factor-κB (NF-κB) pathway. On the other hand, it is recognized that catechin possesses a beneficial property for bone metabolism. Among them, (-)-epigallocatechin gallate (EGCG) is an abundant and major bioactive component. In the present study, we investigated the effect of EGCG on the IL-1 stimulated IL-6 synthesis in osteoblast-like MC3T3-E1 cells. EGCG significantly enhanced the IL-1-stimulated IL-6 synthesis in a dose-dependent manner in the range between 50 and 100 μM. EGCG increased the mRNA levels of IL-6 stimulated by IL-1. IL-1-induced phosphorylation of IκB and NF-κB were suppressed by EGCG. On the other hand, EGCG failed to affect the IL-1-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase and AMPK. These results strongly suggest that EGCG enhances IL-1-stimulated IL-6 synthesis through inhibiting the AMPK-IκB/NF-κB pathway at the point between AMPK and IκB/NF-κB in osteoblasts.  相似文献   

13.
14.
15.
Frailty is an important geriatric syndrome that predicts disability and mortality. Substantial evidence suggests inflammation marked by elevated IL-6 levels as a key pathophysiologic factor that contributes to frailty. CXCL-10, a potent pro-inflammatory chemokine, has increased levels with age and is implicated in several inflammatory conditions. To better understand molecular mechanisms of inflammation activation in frailty, we evaluated monocytic expression of CXCL-10 and other inflammatory pathway genes by pathway-specific gene array analysis and quantitative RT-PCR. Frailty status was determined by the validated criteria. Sixteen pairs of community-dwelling frail and age-, race-, and sex-matched non-frail participants (mean age 83 years, range 72–94) completed the study. Here we report that frail participants had higher CXCL-10 expression levels than matched non-frail controls (1.05 ± 0.88 versus 0.53 ± 0.39, p = 0.04). CXCL-10 expression correlated with IL-6 levels only in frail participants (Spearman correlation coefficient r = 0.52, p = 0.03). Furthermore, frailty-associated CXCL-10 upregulation was highly correlated with IL-6 elevation, both measured by frail-over-non-frail ratios (r = 0.93, p < 0.0001). These findings suggest upregulated monocytic expression of CXCL-10 as an important molecular mechanism that contributes to inflammation activation in frail older adults. Therapeutic implications include potential development of CXCL-10-based interventional strategies for the prevention and treatment of frailty in older adults.  相似文献   

16.
Ye F  Jin XQ  Chen GH  Den XL  Zheng YQ  Li CY 《Gene》2012,499(1):61-69
Many epidemiological studies have investigated the associations between polymorphisms of interleukin-1 (IL1) and interleukin-6 (IL6) genes and risk of ischemic stroke (IS), but no conclusions are available because of conflicting results. The aim of this study was to assess the relationships by meta-analysis. The databases of Pubmed, Embase and Wangfang, updated to August 1st, 2011, were retrieved. Odds ratio (OR) and corresponding 95% confidence interval (95% CI) as effect size were calculated by a fixed- or random-effect model. In total, three case-control studies for IL1α-889C/T, eight studies for IL1β-511C/T, eight studies for IL1-Ra and seven studies for IL6-147G/C were included in this meta-analysis. Combined analysis indicated that IL1β-511C/T polymorphism was not overall associated with risk of IS [OR (95% CI)=1.22 (0.85-1.87) for TT vs. CC]. However, when subgroup analyses for countries were conducted, the results indicated that T allele was associated with increased risk of IS for Polish and associated with a trend of increased risk of IS for Chinese although it did not reach statistical significance [TT vs. CC: OR (95% CI)=1.97 (1.22-3.17) for Polish and 1.40 (0.99-1.99) for Chinese]. In addition, overall and subgroup analyses indicated that IL1α-889C/T, IL1-Ra and IL6-147G/C polymorphisms were also not associated with risk of IS [OR (95% CI)=1.21 (0.86-1.70) for TT vs. CC of IL1α-889C/T, 1.22 (0.85-1.75) for RN2/RN2 vs. RN1/RN1 for IL1-Ra and 1.09 (0.84-1.40) for G carriers vs. C carriers for IL6-147G/C]. This study inferred that IL1β-511C/T polymorphism might be moderately associated with increased risk of IS, but no sufficient evidence was available to support any associations between IL1-Ra and IL6-147G/C polymorphisms and IS. We could not draw a conclusion between IL1α-889C/T polymorphism and risk of IS based on the limited data, and further large sample-sized studies were required.  相似文献   

17.
18.
19.

[Purpose]

This study was carried out to investigate the effects of different training modes on IL-6 and CRP in patients with type 2 diabetes mellitus (T2DM).

[Methods]

The subjects consisted of 16 middle-aged women with type 2 diabetes mellitus (T2DM), all of whom had no other complications. The 16 subjects were randomly assigned to two experimental groups: the circuit training group (CTG, n = 8) and aerobic training group (ATG, n = 8). Based on measured THR (target heart rate) for maximum oxygen consumption rate, the circuit training group (CTG) exercised at 60% intensity, 60 min/day, 5 sets, 3 days/week for 12 weeks. Based on measured THR (target heart rate) for maximum oxygen consumption rate, the aerobic training group (ATG) exercised at 60% intensity (which was increased gradually in weeks 4, 7, and 10) 60 min/day, 3 days/week for 12 weeks.

[Results]

The results are as follows. Significant decreases in the post training values of weight, % Fat, BMI, IL-6 and CRP (p < .05) were observed in the CTG compared to pre-training. However, there were no differences in the physical characteristic and blood inflammatory factors between the groups (ATG & CTG).

[Conclusion]

In conclusion, the results of this study suggest that circuit training (CT) may be considered as an effective training mode for helping to decrease the blood inflammatory factors (IL-6 and CRP) in patients with type 2 diabetes mellitus (T2DM).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号