首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Brassinosteroids (BRs) regulate plant growth and development through a complex signal transduction pathway involving BRASSINOSTEROID INSENSITIVE 1 (BRI1), which is the BR receptor, and its co-receptor BRI1-ASSOCIATED KINASE 1 (BAK1). Both proteins are classified as Ser/Thr protein kinases. Recently, we reported that recombinant cytoplasmic domains (CD) of BRI1 and BAK1 also autophosphorylate on tyrosine residues and thus are dual-specificity kinases.1 Two sites of Tyr autophosphorylation were identified that appear to have different effects on BRI1 function. Tyr-831 in the juxtamembrane domain is not essential for kinase activity but has a regulatory role, with phosphorylation of Tyr-831 causing inhibition of growth and delay of flowering. In contrast, Tyr-956 is located in subdomain IV of the kinase domain and is essential for kinase activity, and we are speculating that the free hydroxyl group at this position is essential and thus phosphorylation of Tyr-956 would inhibit BRI1 kinase activity. Expression of BRI1(Y831F)-Flag in the weak allele bri1-5 rescued the dwarf phenotype but plants had rounder leaves, increased shoot biomass, and flowered earlier than plants expressing the BRI1(wild type)-Flag in the bri1-5 background. To further elaborate on earlier results, we present additional phenotypic analysis of transgenic Arabidopsis plants expressing BRI1(Y831F)-Flag or site-directed mutants of other Tyr residues within the kinase domain. The results highlight the unique role of Tyr-831 in regulation of BR signaling in vivo. Elucidating the molecular basis for increased biomass accumulation in plants expressing BRI1(Y831F)-Flag may have applications for agriculture.Key words: brassinosteroids, LRR-RLK, autophosphorylation, tyrosine phosphorylation, signal transduction  相似文献   

2.
BRI1-like receptor kinase (BRL1) was identified as an extragenic suppressor of a weak bri1 allele, bri1-5, in an activation-tagging genetic screen for novel brassinosteroid (BR) signal transduction regulators. BRL1 encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Sequence alignment revealed that BRL1 is closely related to BRI1, which is involved in BR perception. Overexpression of a BRL1 cDNA, driven by a constitutive CaMV 35S promoter, recapitulates the bri1-5 suppression phenotypes, and partially complements the phenotypes of a null bri1 allele, bri1-4. Analysis of a BR-specific feedback response gene, CPD, indicates that BRL1 functions in BR signaling. BRL1 expression pattern overlaps with, but is distinct from, that of BRI1. In addition, both the expression level and in vitro kinase autophosphorylation activity of BRL1 are significantly lower than those of BRI1. bri1-5 brl1-1 double mutant plants have enhanced developmental defects relative to bri1-5 mutant plants, revealing that BRL1 plays a partially redundant role with BRI1 in controlling Arabidopsis growth and development. These findings enhance our understanding of functional redundancy and add an additional layer of complexity to RLK-mediated BR signaling transduction in Arabidopsis.  相似文献   

3.
BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling   总被引:48,自引:0,他引:48  
Nam KH  Li J 《Cell》2002,110(2):203-212
The Arabidopsis BAK1 (BRI1 Associated receptor Kinase 1) was identified by a yeast two-hybrid screen as a specific interactor for BRI1, a critical component of a membrane brassinosteroid (BR) receptor. In yeast, BAK1/BRI1 interaction activates their kinase activities through transphosphorylation. BAK1 and BRI1 share similar gene expression and subcellular localization patterns and physically associate with each other in plants. Overexpression of the BAK1 gene leads to a phenotype reminiscent of BRI1-overexpression transgenic plants and rescues a weak bri1 mutant. In contrast, a bak1 knockout mutation gives rise to a weak bri1-like phenotype and enhances a weak bri1 mutation. We propose that BAK1 and BRI1 function together to mediate plant steroid signaling.  相似文献   

4.
Gou X  Yin H  He K  Du J  Yi J  Xu S  Lin H  Clouse SD  Li J 《PLoS genetics》2012,8(1):e1002452
The Arabidopsis thaliana somatic embryogenesis receptor kinases (SERKs) consist of five members, SERK1 to SERK5, of the leucine-rich repeat receptor-like kinase subfamily II (LRR-RLK II). SERK3 was named BRI1-Associated Receptor Kinase 1 (BAK1) due to its direct interaction with the brassinosteroid (BR) receptor BRI1 in vivo, while SERK4 has also been designated as BAK1-Like 1 (BKK1) for its functionally redundant role with BAK1. Here we provide genetic and biochemical evidence to demonstrate that SERKs are absolutely required for early steps in BR signaling. Overexpression of four of the five SERKs-SERK1, SERK2, SERK3/BAK1, and SERK4/BKK1-suppressed the phenotypes of an intermediate BRI1 mutant, bri1-5. Overexpression of the kinase-dead versions of these four genes in the bri1-5 background, on the other hand, resulted in typical dominant negative phenotypes, resembling those of null BRI1 mutants. We isolated and generated single, double, triple, and quadruple mutants and analyzed their phenotypes in detail. While the quadruple mutant is embryo-lethal, the serk1 bak1 bkk1 triple null mutant exhibits an extreme de-etiolated phenotype similar to a null bri1 mutant. While overexpression of BRI1 can drastically increase hypocotyl growth of wild-type plants, overexpression of BRI1 does not alter hypocotyl growth of the serk1 bak1 bkk1 triple mutant. Biochemical analysis indicated that the phosphorylation level of BRI1 in serk1 bak1 bkk1 is incapable of sensing exogenously applied BR. As a result, the unphosphorylated level of BES1 has lost its sensitivity to the BR treatment in the triple mutant, indicating that the BR signaling pathway has been completely abolished in the triple mutant. These data clearly demonstrate that SERKs are essential to the early events of BR signaling.  相似文献   

5.
Plants must constantly adjust their growth and defense responses to deal with the wide variety of stresses they encounter in their environment. Among phytohormones, brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of the plant lifecycle including growth, development and responses to various stresses including insect attacks. Here, we show that BRs regulate glucosinolate (GS) biosynthesis and function in insect herbivory. Preference tests and larval feeding experiments using the generalist herbivore, diamondback moth (Plutella xylostella), revealed that the larvae prefer to feed on Arabidopsis thaliana brassinosteroid insensitive 1 (bri1‐5) plants over wild‐type Ws‐2 or BRI1‐Flag (bri1‐5 background) transgenic plants, which results in an increase in larval weight. Analysis of GS contents showed that 3‐(methylsulfinyl) propyl GS (C3) levels were higher in bri1‐5 than in Ws2 and BRI1‐Flag transgenic plants, whereas sinigrin (2‐propenylglucosinolate), glucoerucin (4‐methylthiobutylglucosinolate) and glucobrassicin (indol‐3‐ylmethylglucosinolate) levels were lower in this mutant. We investigated the effect of brassinolide (BL) on GS biosynthesis in Arabidopsis and radish (Raphanus sativus L.) by monitoring the expression levels of GS biosynthetic genes, including MAM1, MAM3, BCAT4 and AOP2, which increased in a BL‐dependent manner. These results suggest that BRs regulate GS profiles in higher plants, which function in defense responses against insects.  相似文献   

6.
Homeostasis of brassinosteroids (BRs) is essential for normal growth and development in higher plants. We examined responsiveness of 11 BR metabolic gene expressions to the decrease or increase of endogenous BR contents in Arabidopsis (Arabidopsis thaliana) to expand our knowledge of molecular mechanisms underlying BR homeostasis. Five BR-specific biosynthesis genes (DET2, DWF4, CPD, BR6ox1, and ROT3) and two sterol biosynthesis genes (FK and DWF5) were up-regulated in BR-depleted wild-type plants grown under brassinazole, a BR biosynthesis inhibitor. On the other hand, in BR-excessive wild-type plants that were fed with brassinolide, four BR-specific synthesis genes (DWF4, CPD, BR6ox1, and ROT3) and a sterol synthesis gene (DWF7) were down-regulated and a BR inactivation gene (BAS1) was up-regulated. However, their response to fluctuation of BR levels was highly reduced (DWF4) or nullified (the other eight genes) in a bri1 mutant. Taken together, our results imply that BR homeostasis is maintained through feedback expressions of multiple genes, each of which is involved not only in BR-specific biosynthesis and inactivation, but also in sterol biosynthesis. Our results also indicate that their feedback expressions are under the control of a BRI1-mediated signaling pathway. Moreover, a weak response in the mutant suggests that DWF4 alone is likely to be regulated in other way(s) in addition to BRI1 mediation.  相似文献   

7.
Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.  相似文献   

8.
Brassinosteroids(BRs),a group of plant steroidal hormones,play critical roles in many aspects of plant growth and development.Previous studies showed that BRI1-mediated BR signaling regulates cell division and differentiation during Arabidopsis root development via interplaying with auxin and other phytohormones.Arabidopsis somatic embryogenesis receptor-like kinases(SERKs),as co-receptors of BRI1,were found to play a fundamental role in an early activation step of BR signaling pathway.Here we report a novel function of SERKs in regulating Arabidopsis root development.Genetic analyses indicated that SERKs control root growth mainly via a BR-independent pathway.Although BR signaling pathway is completely disrupted in the serk1 bak1 bkk1 triple mutant,the root growth of the triple mutant is much severely damaged than the BR deficiency or signaling null mutants.More detailed analyses indicated that the triple mutant exhibited drastically reduced expression of a number of genes critical to polar auxin transport,cell cycle,endodermis development and root meristem differentiation,which were not observed in null BR biosynthesis mutant cpd and null BR signaling mutant bri1-701.  相似文献   

9.
10.
Xu W  Huang J  Li B  Li J  Wang Y 《Cell research》2008,18(4):472-478
Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bri1, bri1-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 989I in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bri1-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bri1-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.  相似文献   

11.
以拟南芥(Arabidopsis thaliana)油菜素内酯受体BRI1为目的基因,利用CRISPR/Cas9基因编辑技术定向编辑拟南芥BRI1,以期获得更多BRI1的突变体,为后续BRI1功能的进一步深入研究奠定基础。通过筛选转基因植株,对编辑后的BRI1进行测序分析,结果显示该突变体中BRI1基因序列由于新碱基的插入导致提前终止。同BRI1强突变体bri1-710一样,相比于野生型对照均对BL处理不敏感,但相比于bri1-710,该突变体植株较大,暗示BRI1 N端可能在BR信号途径中有重要作用。因此该研究可为后续进一步研究拟南芥及其他同源物种的BRI1功能提供可靠的参考依据。  相似文献   

12.
Exogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10(-10) M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity. Interestingly, IAA treatment to the roots of bri1-301 and bak1 plants or of plants pretreated with a BL biosynthetic inhibitor, brassinazole, increased their sensitivity to gravity, while these treatments for the BL-hypersensitive transgenic plants, BRI1-GFP and 35S-BAK1, were less effective. Expression of a CYP79B2 gene, encoding an IAA biosynthetic enzyme, was suppressed in BL-hypersensitive plant types and enhanced in BL-insensitive or -deficient plants. In conclusion, our results indicate that BL interacts negatively with IAA in the regulation of plant gravitropic response and root growth, and its regulation is achieved partly by modulating biosynthetic pathways of the counterpart hormone.  相似文献   

13.
Li J  Wen J  Lease KA  Doke JT  Tax FE  Walker JC 《Cell》2002,110(2):213-222
Brassinosteroids regulate plant growth and development through a protein complex that includes the leucine-rich repeat receptor-like protein kinase (LRR-RLK) brassinosteroid-insensitive 1 (BRI1). Activation tagging was used to identify a dominant genetic suppressor of bri1, bak1-1D (bri1-associated receptor kinase 1-1Dominant), which encodes an LRR-RLK, distinct from BRI1. Overexpression of BAK1 results in elongated organ phenotypes, while a null allele of BAK1 displays a semidwarfed phenotype and has reduced sensitivity to brassinosteroids (BRs). BAK1 is a serine/threonine protein kinase, and BRI1 and BAK1 interact in vitro and in vivo. Expression of a dominant-negative mutant allele of BAK1 causes a severe dwarf phenotype, resembling the phenotype of null bri1 alleles. These results indicate BAK1 is a component of BR signaling.  相似文献   

14.
15.
Nam KH  Li J 《The Plant cell》2004,16(9):2406-2417
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) is a Leu-rich-repeat (LRR) receptor kinase that functions as a critical component of a transmembrane brassinosteroid (BR) receptor. It is believed that BRI1 becomes activated through heterodimerization with BAK1, a similar LRR receptor kinase, in response to BR signal. A yeast two-hybrid screen using the kinase domain of BRI1 identified an Arabidopsis thaliana Transthyretin-Like protein (TTL) as a potential BRI1 substrate. TTL interacts with BRI1 in a kinase-dependent manner in yeast and is phosphorylated by BRI1 in vitro. TTL displays a similar expression pattern with BRI1 and is associated with the plasma membrane. Overexpression of the TTL gene results in a phenotype that was observed in weak bri1 mutants and null bak1 mutants. By contrast, two T-DNA insertional mutations in the TTL gene promote plant growth and enhance BR sensitivity. We hypothesized that TTL might directly regulate certain biochemical activities near the plasma membrane to control plant growth.  相似文献   

16.
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.  相似文献   

17.
18.
Cell expansion, and its coordination with cell division, plays a critical role in the growth and development of plant organs. However, the genes controlling cell expansion during organogenesis are largely unknown. Here, we demonstrate that a novel Arabidopsis gene, ARGOS-LIKE (ARL), which has some sequence homology to the ARGOS gene, is involved in this process. Reduced expression or overexpression of ARL in Arabidopsis results in smaller or larger cotyledons and leaves as well as other lateral organs, respectively. Anatomical examination of cotyledons and leaves in ARL transgenic plants demonstrates that the alteration in size can be attributed to changes in cell size rather than cell number, indicating that ARL plays a role in cell expansion-dependent organ growth. ARL is upregulated by brassinosteroid (BR) and this induction is impaired in the BR-insensitive mutant bri1, but not in the BR-deficient mutant det2. Ectopic expression of ARL in bri1-119 partially restores cell growth in cotyledons and leaves. Our results suggest that ARL acts downstream of BRI1 and partially mediates BR-related cell expansion signals during organ growth.  相似文献   

19.
Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3beta family. Unlike human glycogen synthase kinase 3beta, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways.  相似文献   

20.
Seven dwarf mutants resembling brassinosteroid (BR)-biosynthetic dwarfs were isolated that did not respond significantly to the application of exogenous BRs. Genetic and molecular analyses revealed that these were novel alleles of BRI1 (Brassinosteroid-Insensitive 1), which encodes a receptor kinase that may act as a receptor for BRs or be involved in downstream signaling. The results of morphological and molecular analyses indicated that these represent a range of alleles from weak to null. The endogenous BRs were examined from 5-week-old plants of a null allele (bri1-4) and two weak alleles (bri1-5 and bri1-6). Previous analysis of endogenous BRs in several BR-biosynthetic dwarf mutants revealed that active BRs are deficient in these mutants. However, bri1-4 plants accumulated very high levels of brassinolide, castasterone, and typhasterol (57-, 128-, and 33-fold higher, respectively, than those of wild-type plants). Weaker alleles (bri1-5 and bri1-6) also accumulated considerable levels of brassinolide, castasterone, and typhasterol, but less than the null allele (bri1-4). The levels of 6-deoxoBRs in bri1 mutants were comparable to that of wild type. The accumulation of biologically active BRs may result from the inability to utilize these active BRs, the inability to regulate BR biosynthesis in bri1 mutants, or both. Therefore, BRI1 is required for the homeostasis of endogenous BR levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号