首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新生儿Fc受体研究进展   总被引:1,自引:0,他引:1  
新生儿Fc受体(FcRn)是由α链和β链两个亚基以非共价键的形式组成的异源二聚体,在免疫球蛋白IgG转运和代谢中发挥着重要作用.对FcRn的分子结构、转运机制及其功能进行了综述.  相似文献   

2.
Fc受体是免疫细胞表面一种重要受体分子,通过与免疫球蛋白Fc段结合触发多种生物学功能,是联系体液免疫和细胞免疫的桥梁。部分硬骨鱼中已经发现了Fc受体,在斑马鱼、斑点又尾鲴和鲤鱼中都克隆到了Fc受体的γ亚基,在鲨鱼和大西洋鲑中证明有能够与免疫球蛋白结合的Fc受体存在,并在斑点叉尾鲴、河豚和虹鳟中存在着类似α亚基的Fc受体。对鱼类Fc受体的发现和研究必将为了解鱼类的免疫机制及免疫进化提供重要的资料。  相似文献   

3.
The human low affinity FcγRII family includes both the activating receptor FcγRIIA and the inhibitory receptor FcγRIIB2. These receptors have opposing signaling functions but are both capable of internalizing IgG-containing immune complexes through clathrin-mediated endocytosis. We demonstrate that upon engagement by multivalent aggregated human IgG, FcγRIIA expressed in ts20 Chinese hamster fibroblasts is delivered along with its ligand to lysosomal compartments for degradation, while FcγRIIB2 dissociates from the ligand and is routed separately into the recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase activity or ubiquitylation of receptor lysine residues. The sorting of FcγRIIB2 away from a degradative fate is not due to its lower affinity for IgG and occurs even upon persistent receptor aggregation. Upon co-engagement of FcγRIIA and FcγRIIB2, the receptors are sorted independently to distinct final fates after dissociation of co-clustering ligand. These results reveal fundamental differences in the trafficking behavior of different Fcγ receptors.  相似文献   

4.
Non-human primate (NHP) studies are often an essential component of antibody development efforts before human trials. Because the efficacy or toxicity of candidate antibodies may depend on their interactions with Fcγ receptors (FcγR) and their resulting ability to induce FcγR-mediated effector functions such as antibody-dependent cell-meditated cytotoxicity and phagocytosis (ADCP), the evaluation of human IgG variants with modulated affinity toward human FcγR is becoming more prevalent in both infectious disease and oncology studies in NHP. Reliable translation of these results necessitates analysis of the cross-reactivity of these human Fc variants with NHP FcγR. We report evaluation of the binding affinities of a panel of human IgG subclasses, Fc amino acid point mutants and Fc glycosylation variants against the common allotypes of human and rhesus macaque FcγR by applying a high-throughput array-based surface plasmon resonance platform. The resulting data indicate that amino acid variation present in rhesus FcγRs can result in disrupted, matched, or even increased affinity of IgG Fc variants compared with human FcγR orthologs. These observations emphasize the importance of evaluating species cross-reactivity and developing an understanding of the potential limitations or suitability of representative in vitro and in vivo models before human clinical studies when either efficacy or toxicity may be associated with FcγR engagement.  相似文献   

5.
Antibody-dependent cellular cytotoxicity (ADCC) is an important effector function determining the clinical efficacy of therapeutic antibodies. Core fucose removal from N-glycans on the Fc portion of immunoglobulin G (IgG) improves the binding affinity for Fcγ receptor IIIa (FcγRIIIa) and dramatically enhances ADCC. Our previous structural analyses revealed that Tyr–296 of IgG1-Fc plays a critical role in the interaction with FcγRIIIa, particularly in the enhanced FcγRIIIa binding of nonfucosylated IgG1. However, the importance of the Tyr–296 residue in the antibody in the interaction with various Fcγ receptors has not yet been elucidated. To further clarify the biological importance of this residue, we established comprehensive Tyr–296 mutants as fucosylated and nonfucosylated anti-CD20 IgG1s rituximab variants and examined their binding to recombinant soluble human Fcγ receptors: shFcγRI, shFcγRIIa, shFcγRIIIa, and shFcγRIIIb. Some of the mutations affected the binding of antibody to not only shFcγRIIIa but also shFcγRIIa and shFcγRIIIb, suggesting that the Tyr–296 residue in the antibody was also involved in interactions with FcγRIIa and FcγRIIIb. For FcγRIIIa binding, almost all Tyr–296 variants showed lower binding affinities than the wild-type antibody, irrespective of their core fucosylation, particularly in Y296K and Y296P. Notably, only the Y296W mutant showed improved binding to FcγRIIIa. The 3.00 Å-resolution crystal structure of the nonfucosylated Y296W mutant in complex with shFcγRIIIa harboring two N-glycans revealed that the Tyr-to-Trp substitution increased the number of potential contact atoms in the complex, thus improving the binding of the antibody to shFcγRIIIa. The nonfucosylated Y296W mutant retained high ADCC activity, relative to the nonfucosylated wild-type IgG1, and showed greater binding affinity for FcγRIIa. Our data may improve our understanding of the biological importance of human IgG1-Fc Tyr–296 in interactions with various Fcγ receptors, and have applications in the modulation of the IgG1-Fc function of therapeutic antibodies.  相似文献   

6.
7.
Development of protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG to Fc gamma (γ) receptors. Variations in human FcγRIIA-H/R-131 and FcγRIIIB-NA1/NA2 affect differential binding of IgG sub-classes. Since variability in FcγR may play an important role in severe malarial anemia (SMA) pathogenesis by mediating phagocytosis of red blood cells and triggering cytokine production, the relationship between FcγRIIA-H/R131 and FcγRIIIB-NA1/NA2 haplotypes and susceptibility to SMA (Hb?相似文献   

8.
《MABS-AUSTIN》2013,5(2):409-421
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

9.
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.  相似文献   

10.
The clinical use of therapeutic antibodies has increased sharply because of their many advantages over conventional small molecule drugs, particularly with respect to their affinity, specificity, and serum stability. Tumor or infected cells are removed by the binding of antibody Fc regions to Fc gamma receptors (FcγRs), which stimulate the activation of immune effector cells. Aglycosylated full-length IgG antibodies expressed in bacteria have different Fc conformations compared to their glycosylated counterparts produced in mammalian cells. As a result, they are unable to bind FcγRs, resulting in little to no activation of immune effector cells. In this study, we created a combinatorial library randomized at the upper CH2 loops of an aglycosylated Fc variant (Fc5: E382V/M428) and used a high-throughput flow cytometry library screening method, combined with bacterial display of homodimeric Fc domains for enhanced FcγR binding affinity. The trastuzumab Fc variant containing the identified mutations (Q295R, L328W, A330V, P331A, I332Y, E382V, M428I) not only exhibited over 120 fold higher affinity of specific binding to FcγRI than wild type aglycosylated Fc, but also retained pH-dependent FcRn binding. These results show that an aglycosylated antibody expressed in bacteria can be evolved for novel FcγR affinity and specificity.  相似文献   

11.
FcγRIIIa, which is predominantly expressed on the surface of natural killer cells, plays a key role in antibody-dependent cell-mediated cytotoxicity (ADCC), a major effector function of therapeutic IgG antibodies that results in the death of aberrant cells. Despite the potential uses of aglycosylated IgG antibodies, which can be easily produced in bacteria and do not have complicated glycan heterogeneity issues, they show negligible binding to FcγRIIIa and abolish the activation of immune leukocytes for tumor cell clearance, in sharp contrast to most glycosylated IgG antibodies used in the clinical setting. For directed evolution of aglycosylated Fc variants that bind to FcγRIIIa and, in turn, exert potent ADCC effector function, we randomized the aglycosylated Fc region of full-length IgG expressed on the inner membrane of Escherichia coli. Multiple rounds of high-throughput screening using flow cytometry facilitated the isolation of aglycosylated IgG Fc variants that exhibited higher binding affinity to FcγRIIIa-158V and FcγRIIIa-158F compared with clinical-grade trastuzumab (Herceptin®). The resulting aglycosylated trastuzumab IgG antibody Fc variants could elicit strong peripheral blood mononuclear cell-mediated ADCC without glycosylation in the Fc region.  相似文献   

12.
13.
Zhang G  Qiao S  Li Q  Wang X  Duan Y  Wang L  Xiao Z  Xia C 《Immunogenetics》2006,58(10):845-849
Receptors for the Fc region (FcγRs) of immunoglobulin G (IgG) play a crucial role in the immune system and host protection against infection. In this study, we describe the cloning, sequencing, and expression of the high-affinity IgG receptor from pig. By screening a translated Expressed Sequence Tags database with the human FcγRI (CD64) protein sequence, we identified a putative porcine homologue. Subsequent polymerase chain reaction amplification confirmed that the identified full-length cDNA was expressed in porcine cells. Rosetting analysis shows that COS-7 cells transfected with a plasmid containing the cloned cDNA were able to bind chicken erythrocytes sensitized with porcine IgG. Scatchard analysis indicated that monomeric IgG bound to transiently transfected cells with an affinity of approximately 4×107 M−1. The porcine FcγRI cDNA is 1,038 nucleotides long and is predicted to encode a 346-amino-acid transmembrane glycoprotein composed of three Ig-like domains, a transmembrane region, and a short cytoplasmic tail. The overall identity of the porcine FcγRI to its human and mouse counterparts at the level of the amino acid sequence was 75% and 57%, respectively. Identification of porcine FcγRI will aid in the understanding of the molecular basis of the porcine immune system and further studies of the receptor function.Gaiping Zhang and Songlin Qiao contributed equally to this study.The GenBank accession number of the nucleotide sequence reported here is DQ026063.  相似文献   

14.
FcγRIIB-deficient mice generated in 129 background (FcγRIIB(129)(-/-)) if back-crossed into C57BL/6 background exhibit a hyperactive phenotype and develop lethal lupus. Both in mice and humans, the Fcγr2b gene is located within a genomic interval on chromosome 1 associated with lupus susceptibility. In mice, the 129-derived haplotype of this interval, named Sle16, causes loss of self-tolerance in the context of the B6 genome, hampering the analysis of the specific contribution of FcγRIIB deficiency to the development of lupus in FcγRIIB(129)(-/-) mice. Moreover, in humans genetic linkage studies revealed contradictory results regarding the association of "loss of function" mutations in the Fcγr2b gene and susceptibility to systemic lupus erythematosis. In this study, we demonstrate that FcγRIIB(-/-) mice generated by gene targeting in B6-derived ES cells (FcγRIIB(B6)(-/-)), lacking the 129-derived flanking Sle16 region, exhibit a hyperactive phenotype but fail to develop lupus indicating that in FcγRIIB(129)(-/-) mice, not FcγRIIB deficiency but epistatic interactions between the C57BL/6 genome and the 129-derived Fcγr2b flanking region cause loss of tolerance. The contribution to the development of autoimmune disease by the resulting autoreactive B cells is amplified by the absence of FcγRIIB, culminating in lethal lupus. In the presence of the Yaa lupus-susceptibility locus, FcγRIIB(B6)(-/-) mice do develop lethal lupus, confirming that FcγRIIB deficiency only amplifies spontaneous autoimmunity determined by other loci.  相似文献   

15.
Fc受体(FcR)是一种表达在免疫细胞表面的受体分子, 由多亚基构成, 通过与免疫球蛋白(Ig)的Fc段结合引起包括炎症因子释放和吞噬作用等体液和细胞免疫反应。研究采用RACE技术首次克隆得到了虹鳟FcγR的α亚基基因(FcγRα)和γ亚基基因(FcRγ)的cDNA序列, 采用生物信息学软件对FcγRα和FcRγ的序列进行了特征分析, 实时荧光定量PCR检测了其在不同组织和细胞亚群中以及在Poly (I鲶C)和LPS刺激后头肾中的表达。结果显示:FcγRα的cDNA全长1677 bp, 开放阅读框为954 bp, 编码317个氨基酸; FcγRα由信号肽和2个Ig样结构域构成, 但没有跨膜区和胞内区。FcRγ亚基存在2种形式, 分别命名为FcRγ1和FcRγ2(包含FcRγ2a和FcRγ2b两个剪接异构体), 它们均由信号肽、跨膜区和胞内的免疫受体酪氨酸活化基序(ITAM)构成。氨基酸序列相似性分析表明虹鳟FcγRα与斑点叉尾鮰FcRI相同率最高(30%), 虹鳟FcRγ1和FcRγ2a/2b与哺乳动物FcRγ相同率最高可达40%。组织表达显示FcγRα、FcRγ1和FcRγ2a/2b在头肾、脾脏和血液中表达较高; 细胞亚群表达显示FcγRα、FcRγ1和FcRγ2a/2b在髓样细胞群中表达最高; LPS和Poly (I鲶C)刺激后,FcγRα、FcRγ1和FcRγ2a/2b在头肾中的表达显著上调, 这表明FcγR在机体抗细菌和抗病毒免疫中可能发挥重要作用。  相似文献   

16.
Plasmodium falciparum malaria kills nearly a million people annually. Over 90% of these deaths occur in children under five years of age in sub-Saharan Africa. A neutrophil mediated mechanism, the antibody dependent respiratory burst (ADRB), was recently shown to correlate with protection from clinical malaria. Human neutrophils constitutively express Fc gamma receptor-FcγRIIA and FcγRIIIB by which they interact with immunoglobulin (Ig) G (IgG)-subclass antibodies. Polymorphisms in exon 4 of FCGR2A and exon 3 of FCGR3B genes encoding FcγRIIA and FcγRIIIB respectively have been described to alter the affinities of both receptors for IgG. Here, associations between specific polymorphisms, encoding FcγRIIA p.H166R and FcγRIIIB-NA1/NA2/SH variants with clinical malaria were investigated in a longitudinal malaria cohort study. FcγRIIA-p.166H/R was genotyped by gene specific polymerase chain reaction followed by allele specific restriction enzyme digestion. FCGR3B-exon 3 was sequenced in 585 children, aged 1 to 12 years living in a malaria endemic region of Ghana. Multivariate logistic regression analysis found no association between FcγRIIA-166H/R polymorphism and clinical malaria. The A-allele of FCGR3B-c.233C>A (rs5030738) was significantly associated with protection from clinical malaria under two out of three genetic models (additive: p = 0.0061; recessive: p = 0.097; dominant: p = 0.0076) of inheritance. The FcγRIIIB-SH allotype (CTGAAA) containing the 233A-allele (in bold) was associated with protection from malaria (p = 0.049). The FcγRIIIB-NA2*03 allotype (CTGCGA), a variant of the classical FcγRIIIB-NA2 (CTGCAA) was associated with susceptibility to clinical malaria (p = 0.0092). The present study is the first to report an association between a variant of FcγRIIIB-NA2 and susceptibility to clinical malaria and provides justification for further functional characterization of variants of the classical FcγRIIIB allotypes. This would be crucial to the improvement of neutrophil mediated functional assays such as the ADRB assay aimed at assessing the functionality of antibodies induced by candidate malaria vaccines.  相似文献   

17.
Analysis of the strength and stoichiometry of immunoglobulin G (IgG) binding to neonatal Fc receptor (FcRn) and Fcγ receptor (FcγR) is important for evaluating the pharmacokinetics and effector functions of therapeutic monoclonal antibody (mAb) products, respectively. The current standard for assessing FcγR and FcRn binding is composed of cell-based and surface plasmon resonance (SPR) assays. In this work, asymmetrical flow field flow fractionation (AF4) was evaluated to establish the true stoichiometry of IgG binding in solution. AF4 and liquid chromatography–mass spectrometry (LC–MS) were applied to directly observe IgG/FcγR and IgG/FcRn complexes, which were not observed using nonequilibrium size exclusion chromatography (SEC) analysis. Human serum albumin (HSA), an abundant component of human blood and capable of binding FcRn, was studied in combination with FcRn and IgG. AF4 demonstrated that the majority of large complexes of IgG/FcRn/HSA were at an approximate 1:2:1 molar ratio. In addition, affinity measurements of the complex were performed in the sub-micromolar affinity range. A significant decrease in binding was detected for IgG molecules with increased oxidation in the Fc region. AF4 was useful in detecting weak binding between full-length IgG/Fc fragments and Fc receptors and the effect of chemical modifications on binding. AF4 is a useful technique in the assessment of mAb product quality attributes.  相似文献   

18.
人类血细胞及其他细胞有IgG-Fc受体(hFcrR)表达,即hFcrR Ⅰ、hFcrR Ⅱ和hFcrR Ⅲ。它们的表达表现明显的多态性,并能介导多种生物学活性,如吞噬、ADCC、增强抗原提呈、促进细胞因子释放、调节免疫球蛋白产生等。细菌感染过程中hFcrR表达增高,提示这类抗体在抗细菌性感染免疫中起一定作用。  相似文献   

19.
Fc 融合蛋白是指利用基因工程等技术将某种具有生物活性的功能蛋白分子与Fc 片段融合而产生的新型重组蛋白,其不仅保留了功能蛋白分子的生物学活性,还具有一些抗体的性质,如通过结合相关Fc 受体延长半衰期和引发抗体依赖细胞介导的细胞毒性效应等。对Fc融合蛋白及其在药学领域的研究进展进行了综述。  相似文献   

20.
Phagocytosis is a crucial event in the immune system that allows cells to engulf and eliminate pathogens. This is mediated through the action of immunoglobulin (IgG)-opsonized microbes acting on Fcγ receptors (FcγR) on macrophages, which results in sustained levels of intracellular Ca(2+) through the mobilization of Ca(2+) second messengers. It is known that the ADP-ribosyl cyclase is responsible for the rise in Ca(2+) levels after FcγR activation. However, it is unclear whether and how CD38 is involved in FcγR-mediated phagocytosis. Here we show that CD38 is recruited to the forming phagosomes during phagocytosis of IgG-opsonized particles and produces cyclic-ADP-ribose, which acts on ER Ca(2+) stores, thus allowing an increase in FcγR activation-mediated phagocytosis. Ca(2+) data show that pretreatment of J774A.1 macrophages with 8-bromo-cADPR, ryanodine, blebbistatin, and various store-operated Ca(2+) inhibitors prevented the long-lasting Ca(2+) signal, which significantly reduced the number of ingested opsonized particles. Ex vivo data with macrophages extracted from CD38(-/-) mice also shows a reduced Ca(2+) signaling and phagocytic index. Furthermore, a significantly reduced phagocytic index of Mycobacterium bovis BCG was shown in macrophages from CD38(-/-) mice in vivo. This study suggests a crucial role of CD38 in FcγR-mediated phagocytosis through its recruitment to the phagosome and mobilization of cADPR-induced intracellular Ca(2+) and store-operated extracellular Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号