首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alkaline phosphatase (ALP) activity becomes restricted to PstO cells at the prestalk-prespore boundary during the later stages of development, suggesting a novel function in the regulation of prestalk cell differentiation. To identify regulatory control sequences within the alp promoter, a series of 5' and internal deletions were generated and fused to the LacZ reporter gene. In vitro assays of reporter activity from Dicytostelium transformants containing the deleted promoter-LacZ fusion constructs showed that the -683 to -468 bp sequence is required for proper activation of the reporter in developing slugs. To identify DNA-protein interactions involved in the regulation of alp, EMSAs were preformed using a series of short overlapping PCR probes that span the regulatory promoter sequence. A sequence-specific DNA-binding protein was identified that interacts with the -665 to -635 bp sequence. This DNA-binding protein was sequentially purified using DEAE-Sephacel, heparin-Sepharose, DNA Affinity, and gel filtration chromatography. A polypeptide with a molecular weight of 28 kDa was identified on an SDS-PAGE. The purified protein was identified as TF2 by mass spectrometry. TF2 may, therefore, bind to the regulatory promoter of alp and function in the developmental control of PstO differentiation in Dicytostelium.  相似文献   

2.
3.
A DNA fragment containing 2,079 base pairs from Bacillus circulans CGMCC 1416 was cloned using degenerate PCR and inverse PCR. An open reading frame containing 981 bp was identified that encoded 326 amino acids residues, including a putative signal peptide of 31 residues. The deduced amino acid sequence showed the highest identity (68.1%) with endo-beta-1,4-D-mannanase from Bacillus circulans strain K-1 of the glycoside hydrolase family 5 (GH5). The sequence encoding the mature protein was cloned into the pET-22b(+) vector and expressed in Escherichia coli as a recombinant fusion protein containing an N-terminal hexahistidine sequence. The fusion protein was purified by Ni2+ affinity chromatography and its hexahistidine tag cleaved to yield a 31-kDa beta-mannanase having a specific activity of 481.55 U/mg. The optimal activity of the purified protein, MANB48, was at 58 degrees C and pH 7.6. The hydrolysis product on substrate locust bean gum included a monosaccharide and mainly oligosaccharides. The recombinant MANB48 may be of potential use in the feed industry.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtained from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17kDa protein matched with the regulatory beta-subunit of calcineurin (Ca(2+)-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.  相似文献   

12.
13.
Protein extracts from dark-grown cell suspension cultures of Catharanthus roseus (Madagascar periwinkle) contained several O-methyltransferase (OMT) activities, including the 16-hydroxytabersonine O-methyltransferase (16HT-OMT) in indole alkaloid biosynthesis. This enzyme was enriched through several purification steps, including affinity chromatography on adenosine agarose. SDS-PAGE of the purified protein preparation revealed a protein band at the size expected for plant OMTs (38-43 kDa). Mass spectrometry indicated two dominant protein species of similar mass in this band, and sequences of tryptic peptides showed similarities to known OMTs. Homology-based RT-PCR identified cDNAs for four new OMTs. Two of these cDNAs (CrOMT2 and CrOMT4) encoded the proteins dominant in the preparation enriched for 16HT-OMT. The proteins were closely related (73% identity), but both shared only 48-53% identity with the closest relatives found in the public databases. The enzyme functions were investigated with purified recombinant proteins after cDNA expression in Escherichia coli. Unexpectedly, both proteins had no detectable 16HT-OMT activity, and CrOMT4 was inactive with all substrates investigated. CrOMT2 was identified as a flavonoid OMT that was expressed in dark-grown cell cultures and copurified with 16HT-OMT. It represented a new type of OMT that performs two sequential methylations at the 3'- and 5'-positions of the B-ring in myricetin (flavonol) and dihydromyricetin (dihydroflavonol). The resulting methylation pattern is characteristic for C. roseus flavonol glycosides and anthocyanins, and it is proposed that CrOMT2 is involved in their biosynthesis.  相似文献   

14.
Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. Using stopped-flow methods we have examined the kinetic mechanism of translocation of UvrD monomers along single-stranded DNA (ssDNA) in vitro by monitoring the transient kinetics of arrival of protein at the 5'-end of the ssDNA. Arrival at the 5'-end was monitored by the effect of protein on the fluorescence intensity of fluorophores (Cy3 or fluorescein) attached to the 5'-end of a series of oligodeoxythymidylates varying in length from 16 to 124 nt. We find that UvrD monomers are capable of ATP-dependent translocation along ssDNA with a biased 3' to 5' directionality. Global non-linear least-squares analysis of the full kinetic time-courses in the presence of a protein trap to prevent rebinding of free protein to the DNA using the methods described in the accompanying paper enabled us to obtain quantitative estimates of the kinetic parameters for translocation. We find that UvrD monomers translocate in discrete steps with an average kinetic step-size, m=3.68(+/-0.03) nt step(-1), a translocation rate constant, kt=51.3(+/-0.6) steps s(-1), (macroscopic translocation rate, mkt=189.0(+/-0.7) nt s(-1)), with a processivity corresponding to an average translocation distance of 2400(+/-600) nt before dissociation (10 mM Tris-HCl (pH 8.3), 20 mM NaCl, 20% (v/v) glycerol, 25 degrees C). However, in spite of its ability to translocate rapidly and efficiently along ssDNA, a UvrD monomer is unable to unwind even an 18 bp duplex in vitro. DNA helicase activity in vitro requires a UvrD dimer that unwinds DNA with a similar kinetic step-size of 4-5 bp step(-1), but an approximately threefold slower unwinding rate of 68(+/-9) bp s(-1) under the same solution conditions, indicating that DNA unwinding activity requires more than the ability to simply translocate directionally along ss-DNA.  相似文献   

15.
16.
为研究小鼠(Mus musculus)组蛋白H3 K4甲基化酶基因Smyd3转录调控的分子机制,本研究首先通过PCR的方法克隆了5条不同长度的Smyd3启动子5’端缺失片段,与pMD19-T载体连接后,双酶切克隆入pGL3-Basic荧光素酶报告基因载体,构建Smyd3启动子-pGL3-Basic报告基因重组质粒,瞬时转染HEK293细胞48 h后采用双报告基因检测试剂盒检测Smyd3启动子各缺失片段的相对荧光活性.结果表明,本研究成功构建Smyd3启动子5’端缺失片段-pGL3-Basic荧光报告基因重组质粒,所构建的启动子重组子转染组与阳性对照组相比表现出荧光活性,并且pGL3-Smyd3-4的荧光活性最强,是其他的2至4倍左右,pGL3-Smyd3-5的荧光活性最弱.本研究初步确定Smyd3基因的启动子核心区域可能位于-533~-42bp之间,在-2026~-533 bp之间可能存在启动子负调控序列.  相似文献   

17.
18.
19.
20.
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号