首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crude subcellular fractions from rat uterus contain a HCO-3 -stimulated Mg2+ -ATPase with properties analogous to those previously reported for the enzyme in gastric mucosa, pancreas, salivary gland and liver lyosome. Estradiol-17 beta treatment of ovariectomized rats resulted in an increase in uterine mitochondrial (HCO-3 +Mg2+)-ATPase and Mg2+ -ATPase activity. In an early response (105 min) to estradiol-17 beta treatment of ovariectomized rats, the lysosomal enzyme, beta-N-acetylglucosaminidase increased in the nuclear and mitochondrial fractions and decreased in the microsomal and supernatant fractions.  相似文献   

2.
Membranous (Na+ + K+)-ATPase from the electric eel was solubilized with 3-[3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate (Chaps). 50 to 70% of the solubilized enzyme was reconstituted in egg phospholipid liposomes containing cholesterol by using Chaps. The obtained proteoliposomes consisted of large vesicles with a diameter of 134 +/- 24 nm as the major component, and their protein/lipid ratio was 1.25 +/- 0.07 g protein/mol phospholipid. The intravesicular volume of these proteoliposomes is too small to consistently sustain the intravesicular concentrations of ligands, especially K+, during the assay. The decrease in K+ concentration was cancelled by the addition of 20 microM valinomycin in the assay medium. The low value of the protein/lipid ratio suggests that these proteoliposomes contain one Na+/K+-pump particle with a molecular mass of 280 kDa per one vesicle as the major component. In these proteoliposomes, the specific activity of the (Na+ + K+)-ATPase reaction was 10 mumol Pi/mg protein per min, and the turnover rate of the ATP-hydrolysis was 3500 min-1, the same as the original enzyme under the same assay condition. The ratio of transported Na+ to hydrolyzed ATP was 3, the same as that in the red cell. The proteoliposomes could be disintegrated by 40-50 mM Chaps without any significant inactivation. This disintegration of proteoliposomes nearly tripled the ATPase activity compared to the original ones and doubled the specific ATPase activity compared to the membranous enzyme, but the turnover rate was the same as the original proteoliposomes and the membranous enzyme. This disintegration of proteoliposomes by Chaps suggests the selective incorporation of the (Na+ + K+)-ATPase particle into the liposomes and the asymmetric orientation of the (Na+ + K+)-ATPase particle in the vesicle.  相似文献   

3.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

4.
Fluoroaluminate, known modulator of G-proteins, inhibits ATP-hydrolase activity of purified solubilized Ca2+, Mg(2+)-ATPase from myometrium cell plasma membranes and Ca(2+)-transporting activity of this enzyme reconstituted into azolectin liposomes: 10 mM NaF plus 10 microM AlCl3 inhibited the primary activity by 95% and--by 81%. Inhibition of purified both solubilized and reconstituted Ca2+, Mg(2+)-ATPases by fluoroaluminate evidences for the possibility of direct interaction AlF4- with this enzyme without involvement of G-protein. The sensitivity to fluoroaluminate of sarcolemmal Ca2+, Mg(2+)-ATPase from myometrium is similar to that of Ca2+, Mg(2+)-ATPase from stomach smooth muscle.  相似文献   

5.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

6.
The membrane bound (Na,K)-ATPase prepared from Artemia salina nauplii was solubilized with a zwitterionic detergent, 3[3(cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), and then purified on a Bio-Gel A-1.5 m column in the presence of the detergent. 1) Upon solubilization, both NaCl and KCl protected the enzyme against loss of activity, KCl being more effective than NaCl. 2) Gel filtration of the solubilized enzyme on a Bio-Gel A-1.5 m column in the presence of 5 mM CHAPS resulted in loss of the enzyme activity even when one of the cations was added. Most of the phospholipids in the solubilized enzyme preparation were removed during the gel filtration (delipidation) and 10-25 phospholipids were left on a protomer (alpha beta) of the enzyme irrespective of the cation present during the gel filtration. With the addition of exogenous phospholipids, the activity was restored. The activity of the enzyme delipidated in the presence of KCl was restored to 3-4 times higher than in the case of that delipidated in the presence of NaCl. 3) Relipidation experiments with a fluorescent phospholipid, dansyl phosphatidylethanolamine (Dans-PE), suggested that the enzyme delipidated in the presence of KCl reassociated with phospholipids more firmly than the enzyme delipidated in the presence of NaCl. From these results we concluded that K+ stabilized the (Na,K)-ATPase more effectively than Na+, even when the enzyme was delipidated.  相似文献   

7.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+-ATPase and the Mg2+-ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membranebound Mg2+-ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20°C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+-ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at ?20°C, which was characteristic of hepatoma plasma membrane Mg2+-ATPase. With solubilized Mg2+-ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+-ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at ?20°C.  相似文献   

8.
To investigate the mechanisms by which hydrostatic pressure inhibits (Na,K)-ATPase, we measured enzyme activity, as a function of pressure and temperature, of purified (Na,K)-ATPase from dog kidney and eel electroplax, and we monitored protein conformation, possible subunit interactions, and the fluidity of the membrane with fluorescent probes. The (Na,K)-ATPase and p-nitrophenylphosphatase activities were inhibited reversibly by pressures below 1.5 kilobars (eel enzyme) and 2.5 kilobars (dog kidney enzyme). Above these pressures, the enzymes were inactivated irreversibly. The plots of 1n(activity) versus pressure were curvilinear; this indicates that the reversible inhibition by pressure involves two or more rate-limiting steps. The calculated activation volumes varied with temperature and pressure and were larger for the (Na,K)-ATPase activity compared to the p-nitrophenylphosphatase activity. The fluorescence polarization of three hydrophobic probes decreased with increasing temperature (10-36 degrees C) and increased with increasing pressure (10(-3)-1.5 kilobars), reversibly, without any evidence of a lipid phase transition. Plots of enzyme activity versus fluorescence polarization of the lipid probes showed an inverse relationship; this indicates that enzyme activity was directly related to the fluidity of the membrane as measured by the lipid probes. Pressure had no effect on the fluorescence polarization of two cardiac glycoside probes nor on the efficiency of resonance energy transfer between either donor and acceptor cardiac glycosides specifically bound to the ouabain sites of different alpha-subunits, or tryptophan and the bound cardiac glycoside probe. These results suggest that dissociation of dimeric alpha-subunits is not related to the inhibition by pressure, and that the cardiac glycoside-complexed enzyme conformation is stabilized by pressure. It is concluded that increased pressure decreases the membrane fluidity which hinders conformational transitions associated with rate-limiting steps of the (Na,K)-ATPase reaction. It is proposed that ion-bound or -occluded forms of (Na,K)-ATPase are stabilized by pressure because they occupy a smaller volume.  相似文献   

9.
The properties of Ca(2+)-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C(12)E(8)) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca(2+)-ATPase with a greater specific activity than solubilization with C(12)E(8) or Triton X-100. DHPC was determined to be superior to C(12)E(8); while that the C(12)E(8) was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca(2+)-ATPase retained the E1Ca-E1*Ca conformational transition as that observed for native microsomes; whereas the C(12)E(8) and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca(2+) transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C(12)E(8) and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca(2+)-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C(12)E(8) and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca(2+) uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca(2+)-ATPase retained more organized and native secondary conformation compared to C(12)E(8) and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C(12)E(8) and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca(2+)-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C(12)E(8) and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein-lipid interactions in the function of the membrane-bound enzyme.  相似文献   

10.
The properties of anion-sensitive ATPase of rat heart mitochondria were studied. Na2CO3, NaHCO3 and Na2SO3 stimualted ATPase activity by 69, 41 and 110%, respectively. Azide, tiocinate and perchlorate inhibited bicarbonate-stimulated ATPase. Bivalent cations increased ATPase activity in such a sequence: Zn2+ greater than or equal to Cd2+ greater than or equal to Co2+ greater than or equal to Mg2+ greater than or equal to Mn2+ greater than Ni2+. In the presence of bicarbonate and sulfite. ATPase activity was maximally stimulated with magnesium. Ni2+ and Ca2+-ions inhibited Mg2+-dependent activity of bicarbonate-stimulated ATPase. AMP uninhibited ATPase activity. The 4 mM concentration of ADP inhibited activity of HCO-3-ATPase. Activity of ATPases decreased at lower temperatures. The properties of anion-sensitive ATPase of rat heart mitochondria and that of HCO-2-ATPase of other cells are discussed.  相似文献   

11.
A high-affinity calcium-dependent ATPase (Ca2+-ATPase) was identified in a crude plasma membrane fraction from Entamoeba invadens (IP-1 strain). The Ca2+-ATPase activity was solubilized from the membrane by utilizing the non-ionic detergent octylglucoside. The activity had an apparent half maximal saturation constant of 0.4 +/- 0.05 microM for free calcium. The calcium activation of ATPase activity followed a cooperative mechanism (Hill number of 2.3 +/- 0.13) which suggests that two interacting sites were involved. The high-affinity Ca2+-ATPase appeared to be magnesium-independent, since by lowering contaminant free magnesium with trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid did not modify the activity observed with Ca2+. The apparent Km of the enzyme for ATP was 31 microM. The observed activity had an optimum pH of 8.8. The enzyme was insensitive to various agents such as Na+, K+, ouabain, dicyclohexylcarbodiimide, KCN, NaN3, mersalyl, quercetin, ruthenium red and vanadate. Only lanthanum (0.5 mM) inhibited 100% the enzymatic activity. Calmodulin and trifluoperazine at the concentrations tested did not modify the Ca2+-ATPase activity.  相似文献   

12.
H+-translocating, Mg2+-ATPase was solubilized from vacuolar membranes of Saccharomyces cerevisiae with the zwitterionic detergent N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and purified by glycerol density gradient centrifugation. Partially purified vacuolar membrane H+-ATPase, which had a specific activity of 18 units/mg of protein, was separated almost completely from acid phosphatase and alkaline phosphatase. The purified enzyme required phospholipids for maximal activity and hydrolyzed ATP, GTP, UTP, and CTP, with this order of preference. Its Km value for Mg2+-ATP was determined to be 0.21 mM and its optimal pH was 6.9. ADP inhibited the enzyme activity competitively, with a Ki value of 0.31 mM. The activity of purified ATPase was strongly inhibited by N,N'-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, tributyltin, 7-chloro-4-nitrobenzoxazole, diethylstilbestrol, and quercetin, but was not affected by oligomycin, sodium azide, sodium vanadate, or miconazole. It was not inhibited at all by antiserum against mitochondrial F1-ATPase or mitochondrial F1-ATPase inhibitor protein. These results indicated that vacuolar membrane H+-ATPase is different from either yeast plasma membrane H+-ATPase or mitochondrial F1-ATPase. The vacuolar membrane H+-ATPase was found to be composed of two major polypeptides a and b of Mr = 89,000 and 64,000, respectively, and a N,N'-dicyclohexylcarbodiimide binding polypeptide c of Mr = 19,500, whose polypeptide composition was also different from those of either plasma membrane H+-ATPase or mitochondrial F1-ATPase of S. cerevisiae.  相似文献   

13.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

14.
The disulfonic stilbene (4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene) is found to be more potent than acetazolamide as an anion transport inhibitor in the turtle bladder, but less potent than acetazolamide as a carbonic anhydrase inhibitor. The anion-dependent (HCO-3,Cl-) moiety of the short-circuiting current is eliminated by 4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene, but only after its addition to the serosal bathing fluid. Whereas 4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene has no effect on Na+ transport across the bladder, it is more potent than ouabain as an inhibitor of microsomal (Na+ + K+)-ATPase of both turtle bladder and eel electric organ.  相似文献   

15.
在酸性条件下,1% Triton X—100加 0.25mol/L KI能有效地溶解燕麦根细胞质膜ATP酶。溶解的ATP酶水解ATP的最适pH在6.5左右,酶活性受到Na_3VO_4和DES的强烈抑制,而不受Na_2MoO_4和NaN_3的抑制。溶解的酶液经透析后,K~ —ATP酶活性占Mg~(2 ),KCl—ATP酶活性的85%。  相似文献   

16.
(1) 93% of protein of chromaffin granule membranes can be solubilized by 1.3% (w/v) sodium cholate. The solubilized material can be substantially delipidated by ammonium sulphate precipitation. After three such cycles less than 2% of the endogenous phospholipids remain. (2) The chromaffin granule membrane Mg2+-ATPase depends on the presence of phospholipids for retention of its full activity. Soybean and extracted chromaffin granule phospholipids fully reactivate the delipidated enzyme provided only one delipidation step is used. (3) Successive ammonium sulphate precipitation steps result in a delipidated, and deactivated ATPase preparation which can be only partially reactivated on re-addition of phospholipids. (4) The phospholipid specificity for reactivation of the Mg2+-ATPase is broad. Although acidic phospholipids allow higher activities than neutral phospholipids, the main requirement appears to be the hydrophobic environment provided by the phospholipid hydrocarbon chains. (5) Correlations between changes in slope in the Arrhenius plot of the Mg2+-ATPase, and phase transitions in the phospholipid used for reactivation suggest that the 'fluidity' of the hydrocarbon chains modulates the activity of the enzyme.  相似文献   

17.
We have studied the properties of membrane-bound ATPase of a facultatively anaerobic alkalophile. The enzyme could not be solubilized without detergent, suggesting an integral membrane protein. The activity was accelerated by NH4+ and acetate anion, and inhibited by NH3-. The enzyme required Mg2+ or Mn2+ as a divalent cation for the maximal activity. In addition to ATP, the enzyme utilized other triphosphates of nucleosides as a substrate, but not di- nor monophosphates. The enzyme was suggested to crossreact with an antibody against the alpha-subunit of Na+/K+-ATPase from dog kidney.  相似文献   

18.
Because nearly all structure/function studies on Na(+)/K(+)-ATPase have been done on enzymes prepared in the presence of SDS, we have studied previously unrecognized consequences of SDS interaction with the enzyme. When the purified membrane-bound kidney enzyme was solubilized with SDS or TDS concentrations just sufficient to cause complete solubilization, but not at concentrations severalfold higher, the enzyme retained quaternary structure, exhibiting alpha,alpha-, alpha,beta-, beta,beta-, and alpha,gamma-associations as detected by chemical cross-linking. The presence of solubilized oligomers was confirmed by sucrose density gradient centrifugation. This solubilized enzyme had no ATPase activity and was not phosphorylated by ATP, but it retained the ability to occlude Rb(+) and Na(+). This, and comparison of cross-linking patterns obtained with different reagents, suggested that the transmembrane domains of the enzyme are more resistant to SDS-induced unfolding than its other domains. These findings (a). indicate that the partially unfolded oligomer(s) retaining partial function is the intermediate in the SDS-induced denaturation of the native membrane enzyme having the minimum oligomeric structure of (alpha,beta,gamma)(2) and (b). suggest potential functions for Na(+)/K(+)-ATPase with intrinsically unfolded domains. Mixtures of solubilized/partially unfolded enzyme and membrane-bound enzyme exhibited cross-linking patterns and Na(+) occlusion capacities different from those of either enzyme species, suggesting that the two interact. Formation of the partially unfolded enzyme during standard purification procedure for the preparation of the membrane-bound enzyme was shown, indicating that it is necessary to ensure the separation of the partially unfolded enzyme from the membrane-bound enzyme to avoid the distortion of the properties of the latter.  相似文献   

19.
1. Isolation of ATPase from rat liver submitochondrial particles by chloroform treatment requires the presence of ATP or ADP during enzyme solubilization. In the absence of adenine nucleotides the enzyme activity is very low although all protein components of F1-ATPase are released. The low concentrations of ATP or ADP required (5 microM) indicate that the high affinity nucleotide-binding sites are involved in enzyme stabilization. Other nucleotides tested (ITP, GTP, UTP, CTP) were found to be less effective. 2. Polyacrylamide gel electrophoresis and immunodiffusion in agar plates revealed that in the absence of adenine nucleotides a fraction of F1-ATPase released by chloroform treatment is split into fragments. The part of the dissociated enzyme molecule has a molecular weight identical with that of a beta-subunit of F1-ATPase. 3. Dissociation of the F1-ATPase molecule could also be prevented by aurovertin. 4. Crude F1-ATPase solubilized by chloroform treatment can be further purified by Sepharose 6B gel filtration. Specific ATPase activity of the purified enzyme was 90 mumol Pi/min per mg protein and the enzyme was composed of five protein subunits (alpha, beta, gamma, delta, epsilon) with molecular weights 58 000, 55 000, 28 000, 13 000 and 8000, respectively. 5. Chloroform-released F1-ATPase from rat liver mitochondria displayed immunochemical cross-reactivity with that isolated from beef heart mitochondria.  相似文献   

20.
(Ca2+ + Mg2+)-ATPase in enriched sarcolemma from dog heart   总被引:1,自引:0,他引:1  
An enriched fraction of plasma membranes was prepared from canine ventricle by a process which involved thorough disruption of membranes by vigorous homogenization in dilute suspension, sedimentation of contractile proteins and mitochondria at 3000 X g followed by sedimentation of a microsomal fraction at 200 000 X g. The microsomal suspension was then fractionated on a discontinuous sucrose gradient. Particles migrating in the density range 1.0591--1.1083 were characterized by (Na+ + K+)-ATPase activity and [3H]ouabain binding as being enriched in sarcolemma and were comprised of nonaggregated vesicles of diameter approx. 0.1 micron. These fractions contained (Ca2+ + Mg2+)-ATPase which appreared endogenous to the sarcolemma. The enzyme was solubilized using Triton X-100 and 1 M KCl and partially purified. Optimal Ca2+ concentration for enzyme activity was 5--10 microM. Both Na+ and K+ stimulated enzyme activity. It is suggested that the enzyme may be involved in the outward pumping of Ca2+ from the cardiac cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号