首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three distinct atrial natriuretic factor (ANF) receptors have been identified and characterized from rat thoracic aortic cultured vascular smooth muscle (RTASM) cells, kidney tubular epithelium (MDCK), and Leydig tumor (MA-10) cells. These include 1) a disulfide-linked 140-kDa protein found in RTASM cells, which was reduced by dithiothreitol (DTT) to 70 kDa, 2) a 120-135-kDa single polypeptide protein, specific to MDCK and MA-10 cells whose Mr was not reduced by DTT, and 3) a 66-70-kDa protein prevalent in both RTASM and MDCK cells, which was not reduced by DTT. After incubation of RTASM cells with 4-azidobenzoyl 125I-ANF, labeling of the 140-kDa protein was blocked by both full-length ANF(99-126) and truncated ANF103-123. In contrast, the labeling of the 120-kDa receptor in MDCK cells was blocked only by full-length ANF(99-126). However, labeling of the 68-70-kDa receptor in both RTASM and MDCK cells was blocked by full-length ANF(99-126) and truncated ANF(103-123). Binding of 125I-ANF(99-126) to RTASM and MDCK cells was rapid, specific, and saturable with a Kd of 1.5 x 10(-10) M and binding capacity (Bmax) of 2.1 x 10(5) sites/RTASM cell and Kd 4.5 x 10(-10) M and Bmax 5 x 10(4) sites/MDCK cell, respectively. Binding of 125I-ANF(99-126) to RTASM cells was displaced with both full-length ANF(99-126) and truncated ANF(103-123), however, binding to MDCK cells was efficiently displaced only with full-length ANF. Both ANF(99-126) and ANF(103-123) stimulated cGMP in RTASM cells but only ANF(99-126) elicited cGMP in MDCK cells. Tryptic proteolysis of the high Mr single chain receptor produced only a 68-kDa fragment, whereas disulfide-linked 140-kDa receptor yielded 52-, 38-, 26-, and 14-kDa fragments. These data provide direct biochemical evidence for three distinct ANF receptors which might be linked to diverse physiological functions of ANF such as natriuresis in the kidney, vasorelaxation in vascular smooth muscle, and steroidogenic responsiveness in Leydig cells.  相似文献   

2.
The relationship between the binding of 125I-labeled rat ANF and the responsiveness in cGMP production of ANF receptors were examined in cultured rat thoracic smooth muscle cells after preexposure with the peptide. Binding assay of 125I-labeled ANF showed a specific, reversible and saturable binding with a KD value of 3.1 +/- 0.3 10(-10) M and a maximum binding (Bmax) of 240 +/- 30 fmol/10(6) cells. Pretreatment of the cells with increasing concentrations of unlabeled ANF (10(-9) M to 10(-7) M) resulted in a dose-dependent decrease of the number of binding sites without a change in the affinity. This effect was clearly associated with a desensitization of ANF-induced cGMP production.  相似文献   

3.
Rat 125I-labeled atrial natriuretic factor (ANF (8-33)) was used to identify ANF receptors on cultured bovine aortic endothelial cells. Specific binding of 125I-ANF at 37 degrees C to confluent endothelial cells was saturable and of high affinity. Scatchard analysis of the equilibrium binding data indicated that endothelial cells contain a single class of binding sites with a Kd of 0.1 +/- 0.01 nM. This particular clone of endothelial cells had 16000 +/- 1300 receptors per cell. The order of potency for competing with 125I-ANF binding was human atrial natriuretic peptide (hANP) = atrial natriuretic factor (ANF (8-33)) greater than atriopeptin II greater than atriopeptin III greater than atriopeptin. The weakest competitor, atriopeptin I, had a K1 of 0.45 nM, which was only 6-fold higher than the K1 for hANP and ANF (8-33). ANF (8-33) and hANP in the presence of 0.5 mM isobutylmethyl-xanthine produced a 15-20-fold increase in cyclic GMP content at 10 pM and a maximal 500-fold elevation of cyclic GMP at 10 nM. The concentrations required to elicit a half-maximal increase in cyclic GMP for hANP, ANF (8-33), atriopeptin I, atriopeptin II and atriopeptin III were 0.30, 0.35, greater than 500, 4.0 and 5.0 nM, respectively. Although atriopeptin I acted as a partial agonist, it was unable to antagonize the effect of ANF (8-33) on cyclic GMP formation. These findings suggest that endothelial cells have multiple and functionally distinct ANF-binding sites.  相似文献   

4.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

5.
Specific binding site for atrial natriuretic factor (ANF), a potent natriuretic and vasorelaxant polypeptide recently isolated from mammalian atria, was studied in cultured vascular smooth muscle cells (VSMC) of the rat aorta. Binding studies of 125I-labeled-synthetic alpha-human natriuretic peptide (alpha-hANP) revealed the presence of a non-interacting, single class of high affinity binding sites for alpha-hANP on VSMC in culture: the apparent dissociation constant (Kd) was approximately 1-2 X 10(-9)M and the number of maximal binding sites was approximately 200,000-300,000 sites/cell. A variety of vasoactive substances and other polypeptide hormones did not affect the binding of 125I-labeled-alpha-hANP to its binding sites. alpha-hANP significantly increased the concentrations of intracellular cyclic GMP in VSMC in a dose-dependent manner (3.2 X 10(-9)-1.6 X 10(-7)M). These data indicate that the specific receptor for ANF is present in VSMC and suggest that intracellular cyclic GMP may be involved in its vasorelaxant effect.  相似文献   

6.
K N Pandey  T Inagami  K S Misono 《Biochemistry》1986,25(26):8467-8472
Atrial natriuretic factor (ANF) is a peptide hormone discovered recently from the heart atrium that possesses potent natriuretic and vasorelaxant activities. Recently we found that ANF markedly stimulates intracellular cGMP and almost completely inhibits cAMP accumulation in testicular interstitial tumor cells [Pandey, K. N., Kovacs, W. J., & Inagami, T. (1985) Biochem. Biophys. Res. Commun. 133, 800-806]. These actions of ANF suggest the presence of ANF receptors in testicular interstitial cells. In this study, cultured murine Leydig tumor cells have been shown to contain specific binding sites for ANF. Saturation binding studies indicated a single class of binding sites with a Kd of 5 X 10(-9) M at a density of 2 X 10(6) sites/cell. The binding of mono[125I]iodo-ANF (125I-ANF) was competed by unlabeled ANF in a dose-dependent manner. Hormones unrelated to ANF such as angiotensin I, bovine luteinizing hormone, and human chorionic gonadotropin were not able to compete against 125I-ANF. The binding of 125I-ANF was rapid, reaching maximum levels in 15 min at 4 degrees C. At 37 degrees C, the cell-bound 125I label was quickly decreased. Pretreatment of cells with NH4Cl, chloroquine, or NaN3 resulted in significant increases in maximum levels of the cell-bound 125I radioactivity. A photoaffinity reagent for ANF receptor was prepared by reacting ANF with succinimido 4-azidobenzoate, and resultant 4-azidobenzoyl- (AZB-) ANF was purified by high-performance liquid chromatography (HPLC). AZB-ANF was radioiodinated by use of chloramine T and purified again by HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The present study shows that in rat anterior pituitary tissue atrial natriuretic factor (ANF) binds to two distinct receptor forms, with apparent molecular weights of about 166K and 58K. Binding assays carried out with (125I)-ANF revealed specific and high affinity non-interacting binding sites, with Ko values of 1-1.7 nM and a density of 10-15,000 sites/cell. rANF fragments (5-25), (5-27) and (5-28) exhibited apparent equipotency in displacing tracer binding, while fragment (13-28) and various other peptides were ineffective. ANF (5-25) was about 100-times less potent than ANF (8-33) in stimulating half-maximum pituitary cGMP production. These data indicate the presence of multiple binding sites for ANF in the pituitary gland and suggest that only part of these sites may be coupled to activation of guanylate cyclase.  相似文献   

8.
The regulation of the atrial natriuretic factor (ANF) receptor system in cultured rat vascular smooth muscle cells (RVSMC) was examined following long term pretreatment of these cells with rANF99-126 or with any one of a series of truncated and ring-deleted analogs. The latter analogs are reported to bind selectively the ANF-C or clearance receptor. Initial competition binding studies revealed that all analogs examined showed comparable apparent receptor binding affinities (Ki values did not differ by more than 10-fold). In contrast, the extent of interaction of the ANF analogs with the receptor pool coupled to particulate guanylate cyclase (the ANF-B receptor) was much more variable, with some ligands failing to stimulate cGMP production or particulate guanylate cyclase over the concentrations tested. Pretreatment of cells for 24 h with rANF99-126 or any of the truncated analogs that interact with the ANF-B receptor caused a dose- and time-dependent decrease in the number of ANF binding sites (99% of which are uncoupled in RVSMC) without any change in affinity. Examination of the binding activity following pretreatment of the cells with ANF suggested that the observed reduction in 125I-rANF99-126 binding capacity was not because of the retention of the peptide on its receptor. Furthermore, this down-regulation was associated with desensitization of particulate guanylate cyclase resulting in a decreased responsiveness of intracellular cGMP accumulation to ANF. In contrast, however, analogs selective for the ANF-C receptor pool failed to cause down-regulation or desensitization. These findings suggest that ANF-C receptors in RVSMC are not independently down-regulated by selective ligands but that nonselective analogs that down-regulate and desensitize the ANF-B receptor system can by some cooperative mechanism reduce the size of the predominant ANF-C receptor pool in these cells.  相似文献   

9.
Atrial natriuretic factor (isoleucine ANF 101-126), cleaved ANF (isoleucine ANF 101-105/106-126) and des (Gln 18, Ser 19, Gly 20, Leu 21, Gly 22) ANF 4-23-NH2 (C-ANF 4-23) stimulated cyclic guanosine monophosphate production (cGMP) by rat aortic vascular smooth muscle cells (VSMC) in culture. Cleaved ANF and ANF C4-23 also antagonised or diminished the response to ANF 101-126. Agonist and antagonist actions of both peptides were dose-related. In contrast, prepro ANF (104-123), an ANF precursor fragment, exhibited no agonist or antagonist effect on cGMP production.  相似文献   

10.
Two peptides with vasodilatory properties consisting of amino acids 1-30 and 31-67 of the 98 a.a. N-terminal end of the prohormone of atrial natriuretic factor (proANF) which circulates in man were investigated to determine if they have specific binding sites on membranes isolated from DDT1 MF-2 smooth muscle cells. Smooth muscle is a known biologic target of these peptides. Competitive binding experiments revealed that proANFs (1-30), (31-67), and (99-126) (i.e., C-terminus; ANF) each had specific and separate binding sites. The dissociation constants for proANFs (1-30), (31-67), and (99-126) binding were 0.11 nM, 4 nM, and 7.3 nM, respectively. The binding site concentrations for proANFs (1-30), (31-67), and ANF were 2.57, 59.91 and 40 fmols/10(6) cells, respectively. The number of binding sites per cell were 1548, 36,087, and 24,090, respectively, for proANFs (1-30), (31-67), and (99-126) (ANF). Each peptide bound to DDT1 MF-2 membranes between 10(-8) to 10(-11) M but could only bind to the other peptides' receptors at concentrations of 10(-6) and 10(-7)M. These results suggest that proANF(1-30) and proANF(31-67) do not work through the ANF receptor but rather have their own separate and distinct receptors that mediate their biologic effects.  相似文献   

11.
Six cases of glomus tumor in superficial soft tissues were investigated immunohistochemically for the presence of different types of intermediate filaments, myosin, laminin, a basal lamina glycoprotein, and the endothelial cell markers, factor VIII-related antigen (FVIIIR:Ag) and Ulex europaeus I lectin (UEA I) binding sites. The tumor cells appeared to contain only vimentin, the fibroblast-type of intermediate filament protein. They were also positive for myosin, and were invested by laminin-positive basal lamina-like material, but did not express endothelial cell markers. Ultrastructural studies revealed prominent arrays of both intermediate filaments and microfilaments, the latter resembling the myofilament bundles seen in smooth muscle cells. The results show that glomus tumor cells resemble smooth muscle cells in their content of myosin and in some ultrastructural features. In their lack of desmin, however, they differ from most types of smooth muscle cell, although they are similar in this respect to some vascular smooth muscle cells.  相似文献   

12.
The actions of atrial natriuretic factor on the vascular wall   总被引:1,自引:0,他引:1  
The actions of atrial natriuretic factor (ANF) on the vascular wall are diverse and show a profound regional heterogeneity. ANF is a potent relaxant of aortic smooth muscle, a response which is associated with activation of particulate guanylate cyclase and elevation in tissue levels of cyclic GMP. However, many large and small muscular arteries and most veins are unresponsive to the peptide. The regional vascular heterogeneity may be due to an altered distribution of high affinity receptors and (or) alterations in the coupling of receptor activation to elevations in cyclic 3',5'-guanosine monophosphate (cGMP). Species differences exist in the structural requirements for receptor activation as well as the effects of infused ANF on peripheral resistance. Although the relaxation to ANF in vitro does not require an intact endothelium, endothelial cells contain multiple receptor subtypes for ANF. Differences amongst tissues and (or) species in the receptor profile for ANF may, in part, explain some of heterogeneity in responsiveness to ANF.  相似文献   

13.
In this study specific high affinity binding sites for atrial natriuretic factor (rANF(99-126] have been identified on cultured endothelial cells of bovine pulmonary artery origin (BPAEC). A time-dependent rise in cellular cGMP levels stimulated by rANF(99-126) was followed by release of the nucleotide into the incubation medium. The use of truncated, ring-deleted and linear atrial peptide analogs in competitive displacement analysis and measurement of cGMP accumulation indicated that only a minor proportion (5-11%) of the available receptor pool was of the ANF-B receptor subtype, linked to guanylate cyclase, with the remaining major proportion possibly of the ANF-C (clearance) receptor subtype. The existence of two ANF receptor subtypes in this cell culture model would suggest a significant role for the circulating peptide in modulation of pulmonary endothelial cell function, which would influence or complement its direct actions on the underlying vasculature of the pulmonary circulation.  相似文献   

14.
Summary Heparin-binding (fibroblast) growth factors (HBGF) are mitogens for both human aortic endothelial and smooth muscle cells. Under similar conditions, both vascular cells display similar numbers of specific HBGF binding sites with similar apparent affinity for HBGF. The monokines, interleukin-1 and tumor necrosis factor, inhibit endothelial cell growth and stimulate smooth muscle cell growth. The opposite mitogenic effects correlate with reduction and increase in HBGF receptor number displayed by endothelial and smooth muscle cells, respectively. These results suggest that the two monokines may depress endothelial cell regeneration and augment smooth muscle cell hyperplasia by differential modulation of the HBGF receptor in the two vascular cell types. This work was supported by US Public Health Service grants DK35310 and HL33487. H. S. is a visiting scientist from Takeda Chemical Industries, Ltd., Central Research Division, Juso-Honmachi-2, Yodogawa-ku, Osaka 532, Japan.  相似文献   

15.
Using 125I-labeled-Tyr0-rat(r)-calcitonin gene-related peptide (CGRP), a potent vasodilatory neuropeptide, we have identified and characterized specific binding sites for CGRP in cultured rat vascular smooth muscle cells (VSMC) and bovine endothelial cells (EC). rCGRP and human (h) CGRP equipotently inhibited 125I-rCGRP binding to both cells, but human calcitonin (hCT) was less potent and other unrelated polypeptides were ineffective. Both rCGRP and hCGRP, but not hCT, equally stimulated intracellular cAMP generation in both cells distinct from beta-adrenergic receptor-mediated mechanism, although they had no effect on cGMP generation in either cell or synthesis of prostacyclin in EC. Autoradiograph of affinity-labeled cell membranes revealed that 125I-rCGRP interacts with a single binding component of almost identical molecular size (approximately 60-kDa) in both cells under reducing and nonreducing conditions. The present study demonstrates for the first time the presence of CGRP receptors in cultured VSMC and EC, functionally coupled to adenylate cyclase system distinct from beta-adrenergic receptors. It is suggested that CGRP-induced vasorelaxation may be mediated partly by cAMP-dependent and/or endothelium-dependent mechanism.  相似文献   

16.
Phenotypic diversity of endothelial cells that line the various vascular spaces has been well established. However, it is not known if biochemical differences also exist, particularly in the numbers of receptors for plasma proteins. Equilibrium binding techniques were used to assess potential differences in the binding of 125I-labelled plasminogen to cultured human umbilical arterial endothelial cells and capillary endothelium, as compared with umbilical venous cells. The kinetic behaviour of plasminogen binding to all three types of cells was similar, with optimal binding occurring between 20 and 30 min of incubation. Binding of plasminogen to arterial, capillary, and venous cells was concentration dependent and reversible upon addition to excess unlabelled plasminogen. Scatchard analyses showed that artery, capillary, and venous endothelial cells all possess low affinity sites for plasminogen with Kd values of 0.30 +/- 0.07, 0.40 +/- 0.06, and 0.40 +/- 0.08 microM, respectively. Vein cells also possess an additional higher affinity binding site with a Kd of 0.07 +/- 0.01 microM, exhibiting a 6-fold greater affinity for plasminogen than the lower affinity sites on capillary and arterial endothelial cells. Assuming a stoichiometry of 1:1 for binding, the data indicate that arterial and capillary endothelial cells contain approximately 4.2 (+/- 0.9) x 10(6) and 4.1 (+/- 0.6) x 10(6) plasminogen receptors per cell. Venous cells contain both low and high density binding sites with 6.2 (+/- 0.8) x 10(6) and 12.4 (+/- 2.4) x 10(6) sites per endothelial cell. The presence of a higher affinity site on vein cells, but not on artery or capillary cells, may signal functional differences relating to fibrinolytic activity on the surface of these cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Summary Endothelial and smooth muscle cells were isolated from human adult large blood vessels to compare their proliferative response to hormones and growth factors. Neural extracts and the medium from differentiated hepatoma cells were used as concentrated sources of required hormones and growth factors that supported both cell types. Active hormones and growth factors were identified from the neural extracts and hepatoma medium by substitution or direct isolation and biochemical characterization. Epidermal growth factor, lipoproteins, and heparin-binding growth factors elicited growth-stimulatory effects on both endothelial and smooth muscle cells. Both types of human vascular cells displayed 7600 to 8600 specific heparin-binding growth factor receptors per cell with a similar apparent dissociation constant (Kd) of 200 to 250 pM. Heparin modified the response of both endothelial and smooth muscle cells to heparin-binding growth factors dependent on the type of heparin-binding growth factor and amount of heparinlike material present. In addition, heparin exerted a growth factor-independent inhibition of smooth muscle cell proliferation. Platelet-derived growth factor, insulinlike growth factors, and glucocorticoid specifically supported proliferation of smooth muscle cells with no apparent effect on endothelial cell proliferation. Growth-factorlike proteinase inhibitors had an impact specifically on endothelial cell proliferation. Transforming growth factor beta was a specific inhibitor of endothelial cells, but had a positive effect on smooth muscle cell proliferation. The results provide a framework for differential control of the two vascular cell types at normal and atherosclerotic blood vessel sites by the balance among positive and negative effectors of endocrine, paracrine and autocrine origin. This research was supported by NIH grants CA37589, HL33847, and AM35310 from the National Institutes of Health, Bethesda, MD; grant 1718 from the Council for Tobacco Research; and a grant from RJR/Nabisco, Inc.  相似文献   

18.
The binding of cGMP by structural components of bovine rod outer segments was studied. The discs and plasma membranes were shown to contain two types of the specific binding sites for cGMP which are distinct from cyclic GMP phosphodiesterase. The sites have a "high" and "low" (Kd = 0.1 divided by 0.35 and 1.5 divided by 2.0 X 10(-6) M respectively) affinity for cGMP. They belong to membraneous integral proteins presumably associated with phospholipids. Their affinity for cGMP is controlled by GTP and calmodulin.  相似文献   

19.
Using [3H]-nitrendipine (Nit) and [125I]-omega conotoxin (w-CTX), the cellular and subcellular distribution of calcium channel subtypes in the homogenates of canine small intestinal circular muscle was studied. Nit. bound to the membranes from the circular smooth muscle cells (PM) and to the synaptosomal membranes from the deep muscular plexus (DMP); the Kd and Bmax values of Nit binding from these two sources were similar (Kd 0.4 +/- 0.16 nM and 0.77 +/- 0.24 nM; Bmax 206 +/- 22 and 192 +/- 39 fmol/mg of protein in DMP and PM respectively). w-CTX, however, bound only to the DMP (Kd 18.41 +/- 7.5 pM, Bmax 265 +/- 36 fmol/mg of protein). In DMP, nifedipine (10(-6) M) failed to interact with the binding of w-CTX; similarly, no modulation of Nit binding with unlabelled w-CTX (10(-7) M) could be detected. Therefore w-CTX and Nit binding sites represent two distinct, non-interactive and differentially distributed binding sites in canine small intestine.  相似文献   

20.
The diverse biological actions of endothelins (ET) appear to be mediated by specific cell-surface receptors. Autoradiography and membrane binding studies have shown abundant ET binding sites in the kidney. However, their expression in specific types of renal cells is unclear. We studied the binding of 125I-labelled endothelin-1 in freshly isolated cell suspensions from canine inner medullary collecting duct. Competition binding experiments revealed the presence of specific high-affinity binding sites: unlabelled ET-1 and ET-2 compared with the radioligand with an IC50 of 135 and 83 pM, respectively, while the IC50 of ET-3 and big ET-1 were 2 and 4 orders of magnitude higher, indicating the presence of ETA-type receptor. Angiotensin II, vasopressin, and atrial natriuretic peptide (ANP) did not compete for ET binding even at a concentration of 10(-6) M. Saturation binding experiments showed a single class of binding sites of high density (Bmax = 56.7 +/- 10.3 fmol/10(6) cells) and high affinity (Kd = 69.8 +/- 10 pM). In contrast, ANP receptors in the same cell preparations appeared as two classes of binding sites with widely different affinity and density. The high-affinity ANP site (Kd = 311 +/- 48 pM) was compatible with ANP-B (guanylate cyclase-coupled) receptor. ET-1 did not compete for this receptor. ET-1 (10(-7) M) did not alter ANP-induced cGMP generation in these cells (3.8-fold increase at 10(-7) M ANP), nor basal levels of cGMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号