首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a combination of classical genetic, molecular genetic, histological, biochemical, and biophysical techniques to identify and characterize a null mutation of the myosin light chain-2 (MLC-2) locus of Drosophila melanogaster. Mlc2E38 is a null mutation of the MLC-2 gene resulting from a nonsense mutation at the tenth codon position. Mlc2E38 confers dominant flightless behavior that is associated with reduced wing beat frequency. Mlc2E38 heterozygotes exhibit a 50% reduction of MLC-2 mRNA concentration in adult thoracic musculature, which results in a commensurate reduction of MLC-2 protein in the indirect flight muscles. Indirect flight muscle myofibrils from Mlc2E38 heterozygotes are aberrant, exhibiting myofilaments in disarray at the periphery. Calcium-activated Triton X-100-treated single fiber segments exhibit slower contraction kinetics than wild type. Introduction of a transformed copy of the wild type MLC-2 gene rescues the dominant flightless behavior of Mlc2E38 heterozygotes. Wing beat frequency and single fiber contraction kinetics of a representative rescued line are not significantly different from those of wild type. Together, these results indicate that wild type MLC-2 stoichiometry is required for normal indirect flight muscle assembly and function. Furthermore, these results suggest that the reduced wing beat frequency and possibly the flightless behavior conferred by Mlc2E38 is due in part to slower contraction kinetics of sarcomeric regions devoid or partly deficient in MLC-2.  相似文献   

2.
An extensive ethylmethanesulfonate mutagenesis of Drosophila melanogaster was undertaken to isolate the stronger alleles of 3 indirect flight-muscle mutations. We isolated 17 strong mutant lines, with nearly complete penetrance and expressivity, using direct screening under polarized light, from more than 1700 mutagenized chromosomes. On complementation, we found 11 of these 17 mutant lines to be alleles of 3 indirect flight-muscle mutations (Ifm(2)RU1, 3 noncomplementing lines; ifm(2)RU2, 6 alleles; ifm(2)RU3, 2 alleles) of the previously isolated 8 complementation groups (Ifm(2)RU1to ifm(2)RU8). In addition, we found 6 new complementation groups with strong defects in adult-muscle morphology; we named these ifm(2)RS1 to ifm(2)RS6. All mutant lines were mapped by meiotic recombination, and 5 of the 6 new complementation lines were mapped using chromosome deficiencies. ifm(2)RS1 maps to a region that harbors ifm(2)RU4 (a mutation that was isolated previously); however, theses are not alleles because each complements the other mutation, and the mutant-muscle phenotype is very different. We used direct screening under polarized light to find recessive mutations; although this method was labor intensive, it can be used to identify recessive genes involved in myogenesis, unlike screens for flightlessness or wing-position defects. This screen identifies regions on the second chromosome that harbor probable genes that are likely expressed in the mesoderm and are thought to be involved in myogenesis. This screen has generated valuable resources that will help us to understand the role of many molecular players involved in myogenesis.  相似文献   

3.
R. M. Cripps  E. Ball  M. Stark  A. Lawn    J. C. Sparrow 《Genetics》1994,137(1):151-164
To identify further mutations affecting muscle function and development in Drosophila melanogaster we recovered 22 autosomal dominant flightless mutations. From these we have isolated eight viable and lethal alleles of the muscle myosin heavy chain gene, and seven viable alleles of the indirect flight muscle (IFM)-specific Act88F actin gene. The Mhc mutations display a variety of phenotypic effects, ranging from reductions in myosin heavy chain content in the indirect flight muscles only, to reductions in the levels of this protein in other muscles. The Act88F mutations range from those which produce no stable actin and have severely abnormal myofibrillar structure, to those which accumulate apparently normal levels of actin in the flight muscles but which still have abnormal myofibrils and fly very poorly. We also recovered two recessive flightless mutants on the third chromosome. The remaining five dominant flightless mutations are all lethal alleles of a gene named lethal(3)Laker. The Laker alleles have been characterized and the gene located in polytene bands 62A10,B1-62B2,4. Laker is a previously unidentified locus which is haplo-insufficient for flight. In addition, adult wild-type heterozygotes and the lethal larval trans-heterozygotes show abnormalities of muscle structure indicating that the Laker gene product is an important component of muscle.  相似文献   

4.
1. Based on incorporation of radioactively labeled N-ethylmaleimide, the readily reactive thiol groups of isolated myosin (EC 3.6.1.3) from fast, slow and cardiac muscles could be classified into 3 types. All 3 myosins contain 2 thiol-1, 2 thiol-2 and a variable number of thiol-3 groups per molecule. Both thiol-1 and thiol-2 groups which are essential for functioning of the K+-stimulated ATPase, are located in the heavy chains in all 3 myosin types. 2. The variation in the incorporation pattern of N-ethylmaleimide over the 3 thiol group classes under steady-state conditions of Mg(2+) - ATP hydrolysis allowed different conformations of some reaction intermediates to be characterized. In all 3 types of myosin the hydrolytic cycle of Mg(2+) - ATP was found to be controlled by the same step at 25 degrees C. In all three cases, this rate-limiting step is changed in the same way by lowereing temperature. 3. Using the chemically determined molecular weights for myosin light chains, their stoichiometry was found on the basis of sodium dodecyl sulfate electrophoresis to be 1.2 : 2.1 : 0.8 for light chain-1: light chain-2:light chain-3 per molecule of fast myosin, 2.0 : 1.9 for light chain-1:light chain-2 per molecule of slow myosin and 1.9 : 1.9 for light chain-1:light chain-2 per molecule of cardiac myosin. This qualitative difference in light subunit composition between the fast and the two types of slow myosin is not reflected in the small variations of the characteristics exhibited by the isolated myosins, but rather seems to be connected with their respective myofibrillar ATPase activities.  相似文献   

5.
Vässin H  Campos-Ortega JA 《Genetics》1987,116(3):433-445
We report here the results of a genetic analysis of the gene Delta (Dl) of Drosophila melanogaster. Dl has been mapped to the band 92A2, on the basis of two pieces of evidence: (1) this band is the common breakpoint of several chromosomal aberrations associated with Dl mutations and (2) recombination mapping of alleles of five different lethal complementation groups that are uncovered by Df( 3R)Dl(FX3) (breakpoints at 91F11; 92A3). Dl was found to map most distally of all five complementation groups. The analysis of a large number of Dl alleles demonstrates the considerable genetic and functional complexity of Dl. Three types of Dl alleles are distinguishable. Most alleles behave as amorphic or hypomorphic recessive embryonic lethal alleles, which in addition cause various defects in heterozygosity over the wild-type allele. The defects are due to haplo-insufficient expression of the locus and can be suppressed by a duplication of the wild-type allele. The second class is comprised of three alleles with antimorphic expression. The phenotype of these alleles can only be reduced, rather than suppressed, by a duplication of the wild-type allele. The third group is comprised of three visible, predominantly hypomorphic alleles with an antimorphic component of phenotypic expression. The pattern of interallelic complementation is complex. On the one hand, there is a group of hypomorphic, fully penetrant embryonic lethal alleles which complement each other. On the other hand, most alleles, including all amorphic alleles, are viable over the visible ones; alleles of antimorphic expression, however, are lethal over visible alleles. These results are compatible with a rather complex genetic organization of the Dl locus.  相似文献   

6.
The present paper describes the isolation and linkage mapping of two isoforms of skeletal muscle myosin heavy chain in pig. Two partial cDNAs (pAZMY4 and pAZMY7), coding for the porcine myosin heavy chain-2B and -β respectively, have been isolated from a pig skeletal muscle cDNA library. Four RFLPs were detected with the putative porcine skeletal myosin heavy chain-2B probe (pAZMY4) and one RFLP was identified with the putative myosin heavy chain-β probe (pAZMY7). Two myosin heavy chain loci were mapped by linkage analysis performed with the five RFLPs against the PiGMaP linkage consortium ResPig database: the MYH1 locus, which identifies the fast skeletal muscle myosin heavy chain gene cluster, was located at the end of the map of porcine chromosome 12, while the MYH7 locus, which identifies the myosin heavy chain-α/-β gene cluster, was assigned to the long arm of porcine chromosome 7.  相似文献   

7.
The recessive X-linked mutation erect wing (ewg), in Drosophila melanogaster, was characterized as a flightless behavioral mutant which specifically lacked the dorsal longitudinal flight muscles [1]. This mutation was mapped distal to the X chromosomal locus yellow, and further to the cytological segment 1 A 1 to 1 B2-3 [2]. Several lethal complementation groups have been mapped to this interval [3]. Our complementation tests show that ewg is allelic to one lethal complementation group in the region 1 A 1 to 1 B2-3. A further analysis of ewg and several lethal alleles isolated at this locus was undertaken in the present investigation. Most of the lethal alleles at this locus lead to a late embryonic or early larval lethal phase, indicating that the ewg+ gene product is necessary for the development of more than just the dorsal longitudinal flight muscles. Intragenic complementation was observed for some of the ewg lethal alleles. Genetic mosaics with ewg lethal alleles showed that mutant cell clones in cuticular structures are viable. Mosaic analysis is consistent with a mesodermal defect associated with the locus.  相似文献   

8.
K. T. Hughes  J. R. Roth    B. M. Olivera 《Genetics》1991,127(4):657-670
The nadC gene of Salmonella encodes the pyridine biosynthetic enzyme PRPP-quinolinate phosphoribosyltransferase. Using a combination of genetic techniques, a deletion map for the Salmonella nadC gene has been generated which includes over 100 point mutants and 18 deletion intervals. The nadC alleles obtained by hydroxylamine mutagenesis include those suppressed by either amber, ochre, or UGA nonsense suppressors as well as alleles suppressed by the missense suppressor, sumA. Deletions were obtained by three separate protocols including spontaneous selection for loss of the nearby aroP gene, recombination between aroP::MudA and nadC::MudA insertion alleles, and selection for spontaneous loss of tetracycline resistance in a nearby guaC::Tn10dTc insertion mutant allele. The nadC mutants comprise one complementation group and the nadC+ allele is dominant to simple, nadC auxotrophic mutant alleles. Intragenic complementation of two nadC alleles, nadC493 and nadC494, mapping to deletion intervals 17 and 18, respectively, suggests that nadC encodes a multimeric enzyme. Both nadC and the nearby aroP locus are transcribed counterclockwise on the standard genetic map of Salmonella, in opposite orientation to the direction of chromosome replication.  相似文献   

9.
Summary The complex locus aro3 of Schizosaccharomyces pombe was subjected to genetical fine structure analysis. By comparing the complementation map and the meiotic recombination map, the aro3 locus could be subdivided into the five adjacent subregions A, B, C, D and E. Out of 115 aro3 alleles, 26 nonsense alleles and 30 missense alleles could be identified by the criteria of nonsense suppressor sensitivity and leakiness, respectively. Most alleles with a pleiotropic complementation pattern are of the nonsense type. We conclude from the polarity of the complementation patterns characterising the nonsense alleles that the translation direction proceeds from subregion A to subregion E. Antipolar effects in complementation are more frequent than in the analogous system of the arom gene cluster of Neurospora crassa.This work formed part of a Ph.D. thesis submitted to the University of Bern  相似文献   

10.
In the Drosophila flightless mutant Ifm(3)3, a transposable element inserted into the alternatively spliced fourth exon of the tropomyosin I (TmI) gene prevents proper expression of Ifm-TmI, the tropomyosin isoform found in indirect flight muscle. We have rescued the flightless phenotype of Ifm(3)3 flies using P-element-mediated transformation with a segment of the Drosophila genome containing the wild-type TmI gene plus 2.5 kb of 5' flanking and 2 kb of 3' flanking DNA. The inserted TmI gene is expressed with the proper developmental and tissue specificity, although its level of expression varies among the five transformed lines examined. These conclusions are based on analyses of flight, myofibrillar morphology, and TmI RNA and protein levels. A minimum of two copies of the inserted TmI gene per cell is necessary to restore flight to most of the flies in each line. We also show that the Ifm-TmI isoform is expressed in the leg muscle of wild-type flies and is decreased in Ifm(3)3 leg muscle. Homozygous Ifm(3)3 mutants do not jump. The ability to jump can be restored with a single copy of the wild-type TmI gene per cell.  相似文献   

11.
陈盛禄  李建科  钟伯雄  苏松坤 《遗传学报》2005,32(10):1037-1044
我国培育成功的世界上蜂王浆产量最高的蜂种(Ea)是从20世纪30年代引进我国的意大利蜜蜂(Eb)中选育的。采用10个微卫星位点对蜂王浆高产蜜蜂、原种意大利蜜蜂(Ee)和本地意大利蜜蜂进行研究,以探明由于人工选择和地理隔离造成的其分子进化上的一些特征。结果,10个微卫星位点在3个蜂种中共扩增到96个等位基因,其中有48个等位基因是不同的,表明10个微卫星位点在3个蜂种中的高度多态性,而且由于人工选择和地理隔离已造成3蜂种在遗传基础上的一些分化。3蜂种的多态信息含量(PIC)分别为0.57、0.50、0.57,杂合度分别为0.60、0.57、0.61,二者均无显著差异。遗传距离的分析结果显示,Ee和Eb(0.14)、Eb和Ea(0.16)之间的遗传距离较近,而Ea和Ee(0.25)之间的遗传距离较远。等位基因频率的分析结果表明,6个位点的7个等位基因的频率(A29的159bp、A24的100bp和104bp、A7的110bp、A43的126bp、A14的221bp和A113的221bp)以Ee、Eb、Ea的顺序递增,Ea的这7个等位基因频率分别显著高于Ee和Eb。同时4个位点的4个等位基因的频率(A24的106bp、A43的140bp;A113的215bp和A14的219bp)以Ea、Eb、Ee的Ⅲ页序下降,Ea在这4个位点的频率分别显著低于Eb和Ee。这些位点的等位基因可能与蜂王浆产量有关。  相似文献   

12.
The molecular basis of the barley dominant Hooded (K) mutant is a duplication of 305 bp in intron IV of the homeobox gene Bkn3. A chemical mutagenesis screen was carried out to identify genetical factors that participate in Bkn3 intron-mediated gene regulation. Plants from recurrently mutagenized KK seeds were examined for the suppression of the hooded awn phenotype induced by the K allele and, in total, 41 suK (suppressor of K) recessive mutants were identified. Complementation tests established the existence of five suK loci, and alleles suKB-4, suKC-33, suKD-25, suKE-74, and suKF-76 were studied in detail. All K-suppressed mutants showed a short-awn phenotype. The suK loci have been mapped by bulked segregant analysis nested in a standard mapping procedure based on AFLP markers. K suppressor loci suKB, B, E, and F all map in a short interval of chromosome 7H, while the locus suKD is assigned to chromosome 5H. A complementation test between the four suK mutants mapping on chromosome 7H and the short-awn mutant lks2, located nearby, excluded the allelism between suK loci and lks2. The last experiment made clear that the short-awn phenotype of suK mutants is due to a specific dominant function of the K allele, a function that is independent from the control on hood formation. The suK loci are discussed as candidate participants in the regulation of Bkn3 expression.  相似文献   

13.
In order for a yeast strain to ferment maltose it must contain any one of the five dominant MAL loci. Each dominant MAL locus thus far analyzed contains three genes: GENE 1, encoding maltose permease, GENE 2 encoding maltase and GENE 3 encoding a positive trans-acting regulatory protein. In addition to these dominant MAL loci, several naturally occurring, partially functional alleles of MAL1 and MAL3 have been identified. Here, we present genetic and molecular analysis of the three partially functional alleles of MAL1: the MAL1p allele which can express only the MAL activator; the MAL1 g allele which can express both a maltose permease and maltase; and the mal1(0) allele which can express only maltase. Based on our results, we propose that the MAL1p, MAL1g and mal1(0) alleles evolved from the dominant MAL1 locus by a series of rearrangements and/or deletions of this yeast telomere-associated locus as well as by other mutagenic processes of gene inactivation. One surprising finding is that the MAL1g-encoded maltose permease exhibits little sequence homology to the MAL1-encoded maltose permease though they appear to be functionally homologous.  相似文献   

14.
In Drosophila melanogaster two alleles at the Third chromosome resistance locus (Tcr; 3-39-6) were isolated in a screen of EMS mutagenized third chromosomes for dominant resistance to dietary alpha-methyl dopa, alpha-MD, a structural analogue of DOPA. Both alleles of Tcr are recessive lethals exhibiting partial complementation. Almost half (48.3%) of the Tcr40/Tcr45 heterozygotes die as embryos but some survive past adult eclosion. Both the embryonic lethal phenotype and the adult phenotype suggest that Tcr is involved in cuticle synthesis. Tcr mutants suppress the lethality of partially complementing alleles at the alpha-MD hypersensitive locus, l(2)amd. The viability of Tcr40/Tcr45, however, is not increased by the presence of a l(2)amd allele. The possibility that the Tcr and l(2)amd mutations reveal a catecholamine metabolic pathway involved in cuticle structure is discussed.  相似文献   

15.
Fox colors in relation to colors in mice and sheep   总被引:4,自引:0,他引:4  
Color inheritance in foxes is explained in terms of homology between color loci in foxes, mice, and sheep. The hypothesis presented suggests that the loci A (agouti), B (black/chocolate brown pigment) and E (extension of eumelanin vs. phaeomelanin) all occur in foxes, both the red fox, Vulpes vulpes, and the arctic fox, Alopex lagopus. Two alleles are postulated at each locus in each species. At the A locus, the (top) dominant allele in the red fox, Ar, produces red color and the corresponding allele in the arctic fox, Aw, produces the winter-white color. The bottom recessive allele in both species is a, which results in the black color of the silver fox and a rare black color in the Icelandic arctic fox when homozygous. The B alleles are assumed to be similar in both species: B, dominant, producing black eumelanin, and b, recessive, producing chocolate brown eumelanin when homozygous. The recessive E allele at the E locus in homozygous form has no effect on the phenotype determined by alleles at the A locus, while Ed, the dominant allele is epistatic to the A alleles and results in Alaska black in the red fox and the dark phase in the arctic fox. Genetic formulae of various color forms of red and arctic fox and their hybrids are presented.  相似文献   

16.
A system of strains and growth media was developed to allow efficient detection of forward mutation, reversion, complementation, and suppression at the canavanine-resistance (CAN1) locus of Saccharomyces cerevisiae. Genetic fine-structure analysis revealed that the map length is at least 40, and possibly as much as 60 X-ray map units; this is the longest gene map yet reported in S. cerevisiae. Allelic complementation was not observed, despite testing of a large number of allele pairs, and alleles suppressible by the ochre suppressor SUP11 were absent from a sample of 48 spontaneous mutants and occurred infrequently (7%) among a sample of ultraviolet-induced mutants. Infrequent mutant types included canavanine-resistant mutants capable of arginine uptake and alleles thought to represent deletions or inversions. In contrast to previous reports in the literature, the spontaneous forward mutation rate at CAN1 did not increase during meiosis.  相似文献   

17.
The proposed function of Cdc4p, an essential contractile ring protein in Schizosaccharomyces pombe, is that of a myosin essential light chain. However, five conditionally lethal cdc4 alleles exhibit complementation in diploids. Such interallelic complementation is not readily explained if the sole function of Cdc4p is that of a myosin essential light chain. Complementation of cdc4 alleles could occur only if different mutant forms can assemble into an active oligomeric complex or if Cdc4p has more than one essential function. To search for other proteins that may interact with Cdc4p, we performed a two-hybrid screen and identified two such candidates: one similar to Saccharomyces cerevisiae Vps27p and the other a putative phosphatidylinositol (PI) 4-kinase. Binding of Cdc4p to the latter and to myosin heavy chain (Myo2p) was confirmed by immunosorbent assays. Deletion studies demonstrated interaction between the Cdc4p C-terminal domain and the PI 4-kinase C-terminal domain. Furthermore, interaction was abolished by the Cdc4p C-terminal domain point mutation, Gly107 to Ser. This allele also causes failure of cytokinesis. Ectopic expression of the PI 4-kinase C-terminal domain caused cytokinesis defects that were most extreme in cells carrying the G107S allele. We suggest that Cdc4p plays multiple roles in cytokinesis and that interaction with a PI 4-kinase may be important for contractile ring assembly and/or function.  相似文献   

18.
C C Karlik  E A Fyrberg 《Cell》1985,41(1):57-66
We have characterized an aberrant allele of a variably spliced Drosophila tropomyosin gene. The allele was recovered from the flightless Ifm(3)3 strain, which has been shown to have structurally and functionally abnormal indirect flight muscles. The transcribed portion of the mutant gene is interrupted by an 8,8 kb insertion of middle repetitive DNA having a structure typical of copia-like Drosophila mobile elements. The insertion is positioned so as to interrupt an exon sequence in one splicing mode and, simultaneously, an intron in the alternate mode. As a consequence of the insertion the allele fails to direct synthesis of the flight muscle-specific tropomyosin isoform, but remains capable of specifying a second isoform, which accumulates in nonfibrillar Drosophila muscles.  相似文献   

19.
The vit gene maps to the mi (microphthalmia) locus of the laboratory mouse.   总被引:5,自引:0,他引:5  
The murine model for human vitiligo (the vit/vit mouse) develops progressive depigmentation of the pelage, skin, and eyes. The vit gene is inherited as an autosomal recessive. We have used classical breeding and isozyme marker analysis to map this vit gene that produces a vitiligo-like condition in the mouse. Crossbreeding the C57BL/6J-vit/vit mice with C57BL/6J mice carrying the Miwh and/or miws alleles at the microphthalmia locus resulted in mutant phenotypes, demonstrating absence of complementation. When vit is heterozygous with the Miwh allele, a "blotched" pigment pattern results. When it is heterozygous with the miws allele, a novel expression of the vitiliginous phenotype results. Further mating analysis of these crossbred populations demonstrates allelic inheritance between vit and the alleles at the microphthalmia locus. Other breeding studies using alleles at the agouti, belted, brown, dominant spotting, extension, mahogany, patch, and piebald loci did not demonstrate pigmentation explainable by allelic inheritance with the vit gene. Also, vit was tested for linkage with isozyme markers located on chromosomes 1, 4, 5, 7, 9, and 11, and results were negative. Therefore, the vit (vitiligo) gene of the laboratory mouse has been mapped to the mi (microphthalmia) locus on chromosome 6. The gene properly should be designated as mivit.  相似文献   

20.
The region of the third chromosome (84D-F) of Drosophila melanogaster that contains the doublesex (dsx) locus has been cytogenetically analyzed. Twenty nine newly induced, and 42 preexisting rearrangements broken in dsx and the regions flanking dsx have been cytologically and genetically characterized. These studies established that the dsx locus is in salivary chromosome band 84E1-2. In addition, these observations provide strong evidence that the dsx locus functions only to regulate sexual differentiation and does not encode a vital function. To obtain new alleles at the dsx locus and to begin to analyze the genes flanking dsx, 59 lethal and visible mutations in a region encompassing dsx were induced. These mutations together with preexisting mutations in the region were deficiency mapped and placed into complementation groups. Among the mutations we isolated, four new mutations affecting sexual differentiation were identified. All proved to be alleles of dsx, suggesting that dsx is the only gene in this region involved in regulating sexual differentiation. All but one of the new dsx alleles have equivalent effects in males and females. The exception, dsxEFH55, strongly affects female sexual differentiation, but only weakly affects male sexual differentiation. The interactions of dsxEFH55 with mutations in other genes affecting sexual differentiation are described. These results are discussed in terms of the recent molecular findings that the dsx locus encodes sex-specific proteins that share in common their amino termini but have different carboxyl termini. The 72 mutations in this region that do not affect sexual differentiation identify 25 complementation groups. A translocation, T(2;3)Es that is associated with a lethal allele in one of these complementation groups is also broken at the engrailed (en) locus on the second chromosome and has a dominant phenotype that may be due to the expression of en in the anterior portion of the abdominal tergites where en is not normally expressed. The essential genes found in the 84D-F region are not evenly distributed throughout this region; most strikingly the 84D1-11 region appears to be devoid of essential genes. It is suggested that the lack of essential genes in this region is due to the region (1) containing genes with nonessential functions and (2) being duplicated, possibly both internally and elsewhere in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号