首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transfer of triglyceride from sites of synthesis in the endoplasmic reticulum to cytoplasmic lipid droplets and nascent VLDL (very low density lipoproteins) in rat liver in vivo has been examined with [3H]glycerol, cell fractionation, and electron microscopy. Rates of mass transfer of newly synthesized triglyceride were estimated from the specific radioactivity of triglyceride present in microsomal membranes and the radioactivity observed in recipient triglyceride pools. Fasting decreased the transfer of triglyceride to nascent VLDL without affecting transfer to lipid droplets. Stimulation of triglyceride synthesis with 2-tetradecylglycidic acid (TDGA) increased transfer of triglyceride to nascent VLDL 5-fold, and to lipid droplets 14-fold, 1 hr after TDGA administration. Triglyceride transfer to nascent VLDL was increased 6-fold, and to lipid droplets 37-fold, above control rates 6 hr following TDGA treatment, indicative of saturation of triglyceride assembly into nascent VLDL and storage of excess triglyceride in lipid droplet reservoirs. These liver triglyceride pools were concurrently expanded and electron microscopy demonstrated more abundant VLDL particles in the endoplasmic reticulum together with a proliferation of lipid droplets in hepatocytes. TDGA progressively decreased hepatic sn-glycerol-3-phosphate in fasting rats while triglyceride synthesis increased, indicating that sn-glycerol-3-phosphate does not limit the rate of triglyceride synthesis in this metabolic state. Results implicate triglyceride transfer from endoplasmic reticulum membranes to nascent VLDL as a regulated determinant of hepatic VLDL assembly and VLDL triglyceride secretion in vivo.  相似文献   

2.
Increased triglyceride synthesis resulting from enhanced flux of fatty acids into liver is frequently associated with VLDL overproduction. This has led to the common belief that hepatic triglyceride synthesis can directly modulate VLDL production. We used adenoviral vectors containing either murine acyl-coenzyme A:diacylglycerol transferase 1 (DGAT1) or DGAT2 cDNA to determine the effect of a short-term increase in hepatic triglyceride synthesis on VLDL triglyceride and apolipoprotein B (apoB) production in female wild-type mice. Hepatic DGAT1 and DGAT2 overexpression resulted in 2.0-fold and 2.4-fold increases in the triglyceride content of liver, respectively. However, the increase in hepatic triglyceride content had no effect on the production rate of VLDL triglyceride or apoB in either case. Liver subfractionation showed that DGAT1 and DGAT2 overexpression significantly increased the content of triglyceride within the cytoplasmic lipid fraction, with no change in the triglyceride content of the microsomal membrane or microsomal VLDL. The increased cytoplasmic triglyceride content was observed in electron micrographs of liver sections from mice overexpressing DGAT1 or DGAT2. Overexpression of DGAT1 or DGAT2 resulted in enhanced [(3)H]glycerol tracer incorporation into triglyceride within cytoplasmic lipids. These results suggest that increasing the cytoplasmic triglyceride pool in hepatocytes does not directly influence VLDL triglyceride or apoB production. In the presence of adequate cytoplasmic lipid stores, factors other than triglyceride synthesis are rate-limiting for VLDL production.  相似文献   

3.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

4.
The topography of glycerolipid biosynthetic enzymes within the transverse plane of rat liver microsomal vesicles was investigated: (1) by use of the impermeant inhibitor, mercury-dextran; (2) by use of proteases; and (3) by determining whether the enzyme activities are latent. The seven enzyme activities investigated (dihydroxyacetone-phosphate acyltransferase, acyldihydroxyacetone-phosphate oxidoreductase, phosphatidic acid : CTPcytidyltransferase, CDPdiacylglycerol : inositol phosphatidyltransferase, 2-monoacylglycerol acyltransferase, diacylglycerol kinase, and the serine base exchange enzyme) function in phosphatidylinositol and phosphatidylserine synthesis and at intermediate levels in glycerolipid synthesis including steps of ether lipid synthesis. Mercury-dextran inhibited four of these enzymes greater than 60% in intact microsomal vesicles. One or more of the proteases employed (chymotrypsin, trypsin and pronase) inactivated each of the seven enzyme activities in intact microsomal vesicles. These two approaches indicate that each of these enzymes has important domains located on the cytoplasmic surface of microsomal vesicles. These enzyme activities could be assayed in intact microsomal vesicles. None appeared to be highly latent, indicating that substrates have free access to active sites. One substrate for each of these enzymes had been shown previously to be unable to cross the microsomal membrane. These data indicate that the active sites of these enzymes are located on the cytoplasmic surface of microsomal vesicles. It is concluded that the synthesis of phosphatidylserine and phosphatidylinositol, intermediates of ether lipid formation and other intermediates of glycerolipid synthesis occur asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. These findings and our previous investigations on the topography of seven enzymes of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine biosynthesis (Ballas, L.M. and Bell, R.M., Biochim. Biophys. Acta 602, (1980) 578-590) indicate that the synthesis of the major cellular glycerolipids occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

5.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

6.
Lung cell-free homogenate, which contains about twice the units of phosphatidate phosphohydrolase per mg of protein compared to liver, was fractionated by differential centrifugation and the fractions were assayed for phosphatidate phosphohydrolase and marker enzymes of endoplasmic reticulum, mitochondria, and lysosomes. Over 60% of the lung phosphatidate phosphohydrolase was associated with the endoplasmic reticulum, compared to 50% of the total liver enzyme. Thus a major portion of the more active lung enzyme is potentially involved in lipid biosynthesis by the endoplasmic reticulum. Less than 0.2% of the total lung enzyme was found in a lamellar body fraction, consistent with previous findings. The lung microsomal phosphohydrolase was specific for lipid substrates, showing equal activity towards phosphatidic acid or lysophosphatidic acid and relatively low activities towards glycerophosphates. It had a neutral pH optimum, similar to the liver enzyme, but differed somewhat in its relative activity at extremes of pH. Stability at 65 degrees C was greater for the lung enzyme. Fluroide inhibited lung (or liver) microsomal phosphatidate phosphohydrolase, while tartrate, MgCl2, or EDTA had no effect. The presence of a high activity of phosphatidate phosphohydrolase in lung endoplasmic reticulum is consistent with the rapid synthesis of pulmonary surfactant phosphatidylcholine.  相似文献   

7.
M D Snider  L A Sultzman  P W Robbins 《Cell》1980,21(2):385-392
The oligosaccharide-lipid which is the precursor of asparagine-linked oligosaccharides of eucaryotic glycoproteins is synthesized from sugar nucleotides in the endoplasmic reticulum. The transmembrane location of the assembly of this oligosaccharide-lipid has been studied in vitro in rat liver microsomes. Protease treatment of these sealed vesicles which are derived from the endoplasmic reticulum resulted in the inactivation of a number of enzymes of oligosaccharide-lipid synthesis. Three early steps, the synthesis of dolichol--phosphate--mannose, of dolichol--phosphate--glucose and of dolichol--pyrophosphoryl--di--N--acetylchitobiose, as well as the final steps, the addition of glucose residues to oligosaccharide-lipid, were inactivated under conditions where only the cytoplasmic side of the membrane was accessible to protease. This finding, and the fact that no activities were latent to protease in intact microsomal vesicles, suggest that oligosaccharide-lipid is assembled on the cytoplasmic side of the microsomal membrane. However, the possibility of enzymes spanning the bilayer with their active sites facing the lumen cannot be ruled out. These results are discussed in relation to the segregation of newly made glycoprotein products within the lumen of the endoplasmic reticulum.  相似文献   

8.
Mature male Sprague-Dawley rats received a single IP injection of either 2,2',4,4',5,5'-hexachlorobiphenyl (HCB), 3,3',4,4'-tetrachlorobiphenyl (TCB) (300 microm/kg) in corn oil (10 ml/kg) or the corn oil vehicle alone, and were killed four days later after having been fasted overnight. The vehicle control group consisted of rats which were allowed free access to feed as well as pair-fed animals. Lipid analyses were conducted on liver, hepatic microsomes and serum. TCB- (but no HCB-) treatment resulted in a statistically significant increase in total liver lipids and triglycerides. Liver phospholipids remained unchanged. Both PCBs increased the cholesterol and phospholipids content of the liver microsomal fraction. Serum lipids measured were not statistically different from control values. While HCB had little effect on the fatty acid composition of liver lipids, TCB caused an increase in C 18:1 (n-9) and a decrease in C 20:4 (n-6). Both PCBs increased C 18:0 in the hepatic microsomal fraction, but TCB also decreased C 16:0. Neither PCB altered the fatty acid composition of serum total lipids. These data are consistent with the concept that specific alterations in lipid metabolism are dependent on the structure of the PCB.  相似文献   

9.
The influence of a tortoise spleen extract (TSE) on lipids of liver endoplasmic reticulum of irradiated (8 Gy) mice has been studied. The administration of TSE immediately after irradiation changes the content of lipid fractions in microsomal membranes preventing the accretion of cholesterol, nonesterified fatty acids, and triacylglycerol. The preparation under study exerts an antioxidant effect.  相似文献   

10.
1. The effect of ethanol on the metabolism of [1-(14)C]palmitate in rat liver was investigated in a single-pass perfusion system at concentrations of 10mm- or 80mm-ethanol and 0.2mm- or 1mm-palmitate. 2. After the perfusion the hepatic lipid was isolated in subcellular fractions. The two major fractions contained triacylglycerol from cytoplasmic lipid droplets and from endoplasmic reticulum plus Golgi apparatus respectively. 3. In experiments with 0.2mm-palmitate perfusion with 10mm- or 80mm-ethanol did not measurably increase the esterification, and the oxidation was markedly decreased and the fatty acid uptake was not affected. 4. Perfusion with ethanol, at 1mm-palmitate, increased the fatty acid uptake, increased esterification and decreased oxidation. The effects of 10mm- and 80mm-ethanol were similar. The incorporation of [1-(14)C]palmitate into triacylglycerol in cytoplasmic lipid droplets was not affected statistically significantly by ethanol. Ethanol increased the incorporation of [1-(14)C]palmitate into di- and tri-acylglycerol in the membranous fraction. Estimated chemically, the contents of di- and tri-acylglycerol were only slightly affected by ethanol. These results suggest that the effect of ethanol was to increase the turnover of fatty acids in triacylglycerol rather than to increase its accumulation. 5. The results indicate that an increased concentration of fatty acids is more important for the formation of acute fatty liver in fed rats than are the direct effects of ethanol on hepatic fatty acid metabolism.  相似文献   

11.
Rats were given a 0.05% polychlorinated biphenyls (PCB) diet supplemented with adequate nutrients for 10 days and not only PCB-induced lipid peroxidation as measured by thiobarbituric acid (TBA)-reactive substances but also variations of lipid peroxides scavengers in liver and its subcellular fractions (nuclei and cell debris, mitochondrial, microsomal and cytosolic fractions) were investigated. The lipid peroxidation in liver and subcellular fractions in the PCB-treated group increased significantly except in the nuclei and cell debris fraction. The increase in lipid peroxidation in the microsomal fraction appeared to be associated in part with the decrease in vitamin E (alpha-tocopherol) content and induction of drug-metabolizing enzymes. In the cytosolic fraction, the total lipid content increased, glutathione peroxidase (GSHPx) activity decreased and the quantity of free radical-reactive substances suppressing lipid peroxidation was low as measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) value. From these results, the increase in lipid peroxidation in the cytosolic fraction in the PCB-treated group was ascribed to the abundance and availability of oxidizable substrate attended with fatty liver, to the decline in GSHPx activity, and to the insufficiency in antioxygenic activity as observed by the decrease in the DPPH value.  相似文献   

12.
Carbohydrate-containing structures in rat liver rough microsomes (RM) were localized and characterized using iodinated lectins of defined specificity. Binding of [125I]Con A increased six- to sevenfold in the presence of low DOC (0.04--0.05%) which opens the vesicles and allows the penetration of the lectins. On the other hand, binding of [125I]WGA and [125I]RCA increased only slightly when the microsomal vesicles were opened by DOC. Sites available in the intact microsomal fraction had an affinity for [125I]Con A 14 times higher than sites for lectin binding which were exposed by the detergent treatment. Lectin-binding sites in RM were also localized electron microscopically with lectins covalently bound to biotin, which, in turn, were visualized after their reaction with ferritin-avidin (F-Av) markers. Using this method, it was demonstrated that in untreated RM samples, binding sites for lectins are not present on the cytoplasmic face of the microsomal vesicles, even after removal of ribosomes by treatment with high salt buffer and puromycin, but are located on smooth membranes which contaminate the rough microsomal fraction. Combining this technique with procedures which render the interior of the microsomal vesicles accessible to lectins and remove luminal proteins, it was found that RM membranes contain binding sites for Con A and for Lens culinaris agglutinin (LCA) located exclusively on the cisternal face of the membrane. No sites for WGA, RCA, soybean (SBA) and Lotus tetragonobulus (LTA) agglutinins were detected on either the cytoplasmic or the luminal faces of the rough microsomes. These observations demonstrate that: (a) sugar moieties of microsomal glycoproteins are exposed only on the luminal surface of the membranes and (b) microsomal membrane glycoproteins have incomplete carbohydrate chains without the characteristic terminal trisaccharides N-acetylglucosamine comes from galactose comes from sialic acid or fucose present in most glycoproteins secreted by the liver. The orientation and composition of the carbohydrate chains in microsomal glycoproteins indicate that the passage of these glycoproteins through the Golgi apparatus, followed by their return to the endoplasmic reticulum, is not required for their biogenesis and insertion into the endoplasmic reticulum (ER) membrane.  相似文献   

13.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

14.
J S Juggi  K Prathap 《Cytobios》1979,24(94):117-134
The sequential pattern of lipid accumulation and associated biochemical changes were studied in two commonly used experimental models of nutritional fatty liver in rats. Female rats were maintained for 8 weeks on high fat, low protein diets containing adequate methionine and choline, and drinking water ad libitum (Diet 1), or deficient in methionine and choline and containing 20% ethanol as a substitute for drinking water (Diet 2). Histologically, there was a progressive increase in liver lipids, mainly in the periportal areas. Occasional foci of liver cell necrosis with lipogranuloma formation occurred in areas of severe fatty change. These changes appeared earlier and were more marked in rats maintained on Diet 2. Electron micrographs revealed large lipid droplets in the liver cells, which sometimes contained myelin figures. The mitochondria were enlarged, distorted and appeared as amorphous structures with disorientated cristae in rats on Diet 1, whereas they had a condensed conformation in rats maintained on Diet 2. Rough endoplasmic reticulum was fragmented and degranulated particularly in rats on Diet 1, and smooth endoplasmic reticulum showed hyperplasia and vesiculation in rats on Diet 2. There was a progressive increase in the total liver lipids and triglycerides in both the groups of rats. This fatty change was accompanied by a significant increase in hepatic 3-hydroxybutyrate, acetoacetate, malate, 2-oxoglutarate, citrate, lactate, ammonia, glutamate, alanine and aspartate, and a significant decrease in oxaloacetate, urea and glucose concentrations. The mass action ratios for alanine aminotransferase, aspartate amino transferase, and glutamate dehydrogenase, generally moved in a parallel direction. Hepatic ATP content was considerably reduced accompanied by a decrease in [ATP]/[ADP] ratios and a significant increased in [lactate]/[pyruvate] and [3-hydroxybutyrate]/[acetoacetate] ratios. There was a corresponding decrease in the [NAD+]/[NADH] ratios both in the cytoplasmic and mitochondrial compartments. These biochemical changes were particularly severe in rats maintained on Diet 1 and Diet 2 for 8 weeks. There was a very good relationship between impaired mitochondrial and endoplasmic reticulum functions, redox and phosphorylation states, and the relevance of their changes to the fate of fatty liver cells.  相似文献   

15.
The isolated perfused rat liver was used to study the 300-800 A electron-opaque bodies which had previously been described in the liver cell Golgi apparatus, smooth endoplasmic reticulum, and space of Disse. When the perfusion medium was enriched with linoleate, the number and electron opacity of these particles increased markedly. Sequential biopsies showed that they appeared first in the smooth surfaced terminal ends of the rough reticulum, the smooth endoplasmic reticulum proper, and the Golgi apparatus and later in the space of Disse. After 60 min of perfusion, particles of the same size and shape as those in the liver cells could be isolated in large numbers from the d < 1.006 fraction of the perfusate. Control livers perfused with an identical medium but without linoleate did not show these changes. Puromycin markedly depressed the production of 300-800 A particles by livers perfused with an oleate-rich medium; however, it did not interfere with the formation of large cytoplasmic droplets of neutral fat. In keeping with these findings, puromycin blocked the incorporation of oleate-(14)C into lipoprotein triglyceride isolated from the perfusate, but did not interfere with the appearance of the labeled fatty acid in tissue triglyceride. Puromycin also blocked the incorporation of leucine-(3)H into both tissue protein and perfusate lipoprotein. We concluded that the 300-800 A particles observed are, in all likelihood, very low density lipoproteins and that their formation is blocked by puromycin, presumably through interference with the synthesis of their apoprotein.  相似文献   

16.
Incubation of apoprotein A-I (apo-A-I), the major protein component of human high density lipoprotein, with rat liver microsomal membranes under conditions of elevated pH and ionic strength leads to the production of a soluble protein:lipid complex (A-I/MM complex). The A-I/MM complex, as purified by density gradient centrifugation and agarose column chromatography, possesses a lipid composition similar to the hepatic microsomal membrane and a protein/lipid ratio similar to that of plasma high density lipoproteins, but markedly different from that of recombinant particles prepared with synthetic lipids. The A-I/MM complex constitutes a more physiological recombinant particle than can be formed using synthetic lipids and may be a suitable model for the newly assembled intracellular high density lipoproteins. Incubation of the erythrocyte plasma membranes with apo-A-I under the same conditions as used with microsomal membranes fails to generate any lipid:apoprotein complexes. This membrane specificity for forming soluble lipoprotein complexes suggests that the microsomal membranes possess a unique feature, possibly their lipid composition, which render them particularly suitable to serve as lipid donors to the apoproteins which are undergoing assembly within the endoplasmic reticulum/Golgi organelles.  相似文献   

17.
1. The metabolism of [1-14C]palmitate in rat liver was studied in a single-pass perfusion system at concentrations of 0.2 or 1 mM. 2. After the perfusion the liver was homogenized and the floating fat was isolated. The incorporation of [1-14C]palmitate into triacylglycerol in this pool increased 9-fold when the palmitate concentration in the medium was increased from 0.2 to 1 mM. In time studies with 1 mM-[1-14C]palmitate 75% of the total accumulation of triacylglycerol occurred in this pool. Our results support the concept that the floating-fat fraction contains the storage pool of triacylglycerol, i.e. the cytoplasmic lipid droplets. 3. In a particulate preparation consisting mainly of mitochondria and microsomal fraction the incorporation of [1-14C]palmitate into triacylglycerol was proportional to the fatty acid concentration. Triacylglycerol in the perfusate medium and in the particulate fraction was in isotopic equilibrium, which indicates that the particulate fraction contained the precursor pool for secreted triacylglycerol, i.e. the pool in endoplasmic reticulum and Golgi apparatus. 4. The oxidation to labelled water-soluble products and to CO2 was increased 14-fold by the 5-fold increase in palmitate concentration.  相似文献   

18.
Secretion of hepatic apoB lipoproteins removes excess triglyceride from the liver. However, the mechanism by which synthesis of apoB, which occurs on the rough endoplasmic reticulum, is coordinated with synthesis of triglyceride, which takes place in the smooth endoplasmic reticulum, is not known. To examine this question, we have manipulated intracellular synthesis of triglyceride and cholesteryl ester in HepG2 cells and determined the impact of these maneuvers on apoB secretion. Since cholesteryl ester is the only major lipid class synthesized in the rough endoplasmic reticulum, our hypothesis was that, in response to a fatty acid challenge, synthesis of cholesteryl ester rather than synthesis of triglyceride would be the immediate trigger to apoB secretion. Oleate complexed to bovine serum albumin caused intracellular triglyceride synthesis to increase 6-fold and cholesteryl ester synthesis to increase almost 3-fold, while apoB secretion into the medium increased by 2.5-fold (P less than 0.0125) at all time points between 4 and 24 h. Addition of acylation stimulating protein to the medium further stimulated both triglyceride and cholesteryl ester synthesis (58% and 108%, respectively) above oleate alone and this resulted in a 50% increase in apoB secretion (P less than 0.0025). By contrast, both progesterone and 2-bromooctanoate inhibited triglyceride and cholesteryl ester synthesis and these effects were associated with reduced apoB secretion. Lovastatin inhibited cholesteryl ester synthesis (45%, P less than 0.0025); however, at the doses used, triglyceride formation was unaffected. Under these circumstances, apoB secretion was reduced by 25% (P less than 0.05). Similarly, 58-035 (an inhibitor of acyl CoA:cholesterol acyltransferase) on the one hand reduced cholesteryl ester synthesis markedly (59%, P less than 0.005), but on the other increased triglyceride synthesis though not statistically significantly (65%, P NS), and again this resulted in decreased apoB secretion (25%, P less than 0.005). Control experiments established that changes in low density lipoprotein catabolism did not contribute importantly to the quantity of apoB in the medium. Taken together, the data indicate that, at least in HepG2 cells, there are parallel changes in cholesteryl ester synthesis and apoB secretion and suggest that it is cholesteryl ester synthesis, not triglyceride synthesis, that is the immediate regulator of apoB secretion when these cells are exposed to an increased influx of fatty acids. However, alternative or additional regulatory mechanisms, such as, for example, a role for acylation of apoB, are not excluded by these studies.  相似文献   

19.
Radiolabeled phosphatidate and diglyceride were prepared bound to rat liver microsomes. These compounds were used as substrates in studies of diglyceride acyltransferase, cholinephosphotransferase, and CTP:phosphatidic acid cytidylyltransferase. Optimum incubation conditions for these reactions in microsomes from normal male rats are described. High fructose diets were fed to rats for 11 days; this resulted in an increased rate of neutral lipid formation from sn-glycerol-3-phosphate by liver microsomal preparations. This was attributed, in part, to a previously reported increase in liver phosphatidate phosphatase activity. The significance of this increase is supported by the finding of a fall in microsomal phosphatidate content and a doubling in microsomal diglyceride. In addition, diglyceride acyltransferase measured with microsomal-bound diglyceride was increased twofold with no equivalent change in cholinephosphotransferase activity. Such a change should result in preferential triglyceride formation from the increased microsomal diglyceride pool. CTP:phosphatidic acid cytidylytransferase activity was depressed by the high fructose diet. These combined alterations would lead to an accelerated hepatic triglyceride formation, a result found in vivo during high fructose feeding. The high fructose diet decreased slightly the total microsomal phospholipid content and markedly depressed phosphatidylethanolamine levels.  相似文献   

20.
Lipid synthesis in permeabilized cultured rat hepatocytes   总被引:1,自引:0,他引:1  
Hepatic lipid synthesis was verified and studied in lysolecithin-permeabilized cultured rat hepatocytes and compared to that of intact liver cells. Triacylglycerol synthesis in permeabilized cells incubated in the presence of glycerol 3-phosphate and long chain fatty acids approached that of intact hepatocytes. Similarly, phosphatidylcholine synthesis in permeable cells incubated in the presence of exogenous CDP-choline was similar to that of intact hepatocytes and at the expense of microsomal neutral lipid synthesis. Phosphatidic acid accumulation in lysolecithin-permeabilized liver cells was remarkably increased as compared to that of intact cells, and its synthesis was mostly accounted for by the activity of mitochondrial glycerol-3-phosphate acyltransferase. Mitochondrial-generated phosphatidate was found to migrate to the endoplasmic reticulum, thus establishing a novel lipid esterification pathway which begins in mitochondrial glycerol 3-phosphate acylation and results in microsomal triacylglycerol and phospholipid synthesis. The free access of permeabilized liver cells to substrates and modulators of lipid synthesis, while maintaining an overall synthetic pattern similar to that of intact hepatocytes, makes them a system of choice for studying hepatic lipid synthesis in general and the microsomal/mitochondrial distribution of fluxes in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号