首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cooling of deciliated Paramecium cells induced a transient Ca current and its amplitude depended on the rate of the temperature drop. The amplitude of the Ca current was increased by the addition of Ca2+ to the bath solution in a concentration-dependent manner, whereas Ni2+, Co2+, Mn2+ and Mg2+ each reversibly inhibited the Ca current in a concentration-dependent manner with apparent dissociation constants of 0.52, 0.66, 0.67 and 2.17 mmol · l−1, respectively. The Ca current was also inhibited reversibly by amiloride, with a dissociation constant of 0.32 mmol · l−1. The Ca current was desensitized by repetitive cooling. The amplitude of the Ca current at the second cooling was smaller than that at the first cooling when the interval was short, but recovered as the interval increased. Replacing extracellular Ca2+ with equimolar Sr2+ or Ba2+ did not significantly affect the amplitude of the current response to cooling, but it accelerated the rate of recovery from desensitization and slowed the decay of the current response. These results suggest that the desensitization and the inactivation of the Ca current may involve a Ca2+-dependent pathway. Accepted: 8 March 1998  相似文献   

2.
The Na/Ca exchanger from lobster muscle crossreacts specifically with antibodies raised against the dog heart Na/Ca exchanger. Immunoblots of the lobster muscle and mammalian heart exchangers, following SDS-PAGE, indicate that the invertebrate and mammalian exchangers have similar molecular weights: about 120 kDa. The exchanger from lobster muscle was partially purified and functionally reconstituted into asolectin vesicles which were loaded with 160 mm NaCl. 45Ca uptake by these proteoliposomes was promoted by replacing 160 mm NaCl in the external medium with 160 mm KCl to produce an outwardly-directed Na+ concentration gradient. When the proteoliposomes were adsorbed onto black lipid membranes (BLM), and DMNitrophen-Ca2+ (caged Ca2+) was added to the KCl medium, photolytically-evoked Ca2+ concentration jumps elicited transient electric currents. These currents corresponded to positive charge exiting from the proteoliposomes, and were consistent with the Na/Ca exchanger-mediated exit of 3 Na+ in exchange for 1 entering Ca2+. The current was dependent upon the Ca2+ concentration jump, the protein integrity, and the outwardly directed Na+ gradient. KCl-loaded proteoliposomes did not produce any current. Low external Na+ concentrations augmented the current, whereas Na+ concentrations >25 mM reduced the current. The dependence of the current on free Ca2+ was Michaelis-Menten-like, with halfmaximal activation (KM(Ca)) at <10 m Ca2+. Caged Sr2+ and Ba2+, but not Mg2+, also supported photolysisevoked outward current, as did Ni2+, but not Mn2+. However, Mg2+ and Mn2+ augmented the Cadependent current, perhaps by facilitating the adsorption of proteoliposomes to the BLM. The Ca-dependent current was irreversibly blocked by La3+ (added as 200 m DMN-La3+). The results indicate that the properties of the Na/Ca exchanger can be studied with these electrophysiological methods.The technical assistance of Verena Heiselpetz in some experiments is gratefully acknowledged. This work was partly supported by the Deutsche Forschungsgemeinschaft (SFB 169) and by National Institutes of Health grants HL30315 and GM39500 to JHK and HL45215 and NS16106 to MPB. MPB was the recipient of a Senior Scientist Award from the Alexander von Humboldt Stiftung.  相似文献   

3.
The calcium indicator fura-2 was used to study the effect of hypotonic solutions on the intracellular calcium concentration, [Ca2+] i , in a human osteoblast-like cell line. Decreasing the tonicity of the extracellular solution to 50% leads to an increase in [Ca2+] i from ∼150 nm up to 1.3 μm. This increase in [Ca2+] i was mainly due to an influx of extracellular Ca2+ since removing of extracellular Ca2+ reduced this increase to ∼250 nm. After cell swelling most of the cells were able to regulate their volume to the initial level within 800 sec. The whole-cell recording mode of the patch-clamp technique was also used to study the effect of an increase in [Ca2+] i on membrane currents in these cells. An increase in [Ca2+] i revealed two types of Ca2+-activated K+ channels, K(Ca) channels. Current through both channel types could not be observed below voltage of +80 mV with [Ca2+] i buffered to 100 nm or less. With patch-electrodes filled with solutions buffering [Ca2+] i to 10 μm both channels types could be readily observed. The activation of the first type was apparently voltage-independent since current could be observed over the entire voltage range used from −160 to +100 mV. In addition, the current was also blocked by charybdotoxin (CTX). The second type of K(Ca) channels in these cells could be activated with depolarizations more positive than −40 mV from a holding potential of −80 mV. This type was blocked by CTX and paxilline. Adding paxilline to the extracellular solution inhibited regulatory volume decrease (RVD), but could not abolish RVD. We conclude that two K(Ca) channel types exist in human osteoblasts, an intermediate conductance K(Ca) channel and a MaxiK-like K(Ca) channel. MaxiK channels might get activated either directly or by an increase in [Ca2+] i elicited through hypotonic solutions. In combination with the volume-regulated Cl conductance in the same cells this K+ channel seems to play a vital role in volume regulation in human osteoblasts. Received: 8 February 2000/Revised: 13 July 2000  相似文献   

4.
Voltage-activated Ca2+ currents, in zona fasciculata cells isolated from calf adrenal gland, were characterized using perforated patch-clamp recording. In control solution (Ca2+: 2.5 mm) a transient inward current was followed, in 40% of the cells, by a sustained one. In 20 mm Ba2+, 61% of the cells displayed an inward current, which consisted of transient and sustained components. The other cells produced either a sustained or a transient inward current. These different patterns were dependent upon time in culture. Current-voltage relationships show that both the transient and sustained components activated, peaked and reversed at similar potentials: −40, 0 and +60 mV, respectively. The two components, fully inactivated at −10 mV, were separated by double-pulse protocols from different holding potentials where the transient component could be inactivated or reactivated. The decaying phase of the sustained component was fitted by a double exponential (time constants: 1.9 and 20 sec at +10 mV); that of the transient component was fitted by a single exponential (time constant: 19 msec at +10 mV). Steady-state activation and inactivation curves of the two components were superimposed. Their half activation and inactivation potentials were similar, about −15 and −34 mV, respectively. The sustained component was larger in Ba2+ than in Sr2+ and Ca2+. Ni2+ (20 μm) selectively blocked the transient component while Cd2+ (10 μm) selectively blocked the sustained one. (±)Bay K 8644 (0.5 μm) increased the sustained component and nitrendipine (0.5–1 μm) blocked it selectively. The sustained component was inhibited by calciseptine (1 μm). Both components were unaffected by ω-conotoxin GVIA and MVIIC (0.5 μm). These results show that two distinct populations of Ca2+ channels coexist in this cell type. Although the voltage dependence of their activation and inactivation are comparable, these two components of the inward current are similar to T- and L-type currents described in other cells. Received: 12 July 1999/Revised: 5 October 1999  相似文献   

5.
The Paramecium cell membrane was voltage-clamped under K current suppression conditions. Ciliary beating was registered using high-speed video microscopy. Depolarizing step pulses activated a transient inward current and induced reversed ciliary beating. Very strong positive steps inhibited ciliary reversal during the pulse suggesting inhibition of the Ca influx. We call the potential, which is sufficiently positive to induce transition from reversed to normal ciliary beating, the transition potential. The transition potential rose with increasing external Ca2+ showing saturation beyond 1 mM Ca2+. Addition of Mg2+, Ba2+ or K+ to the 1 mM Ca2+ bathing solution depressed the transition potential in a concentration-dependent manner. The depolarization-activated inward Ca current increased with rising external Ca concentration, and addition of either Mg2+, Ba2+ or K2+ diminished the inward Ca current. The diverging results of Ca2+-dependent positive shifts, and Mg2+-(Ba2+-, K+-) dependent negative shifts in transition potential are compared with shifts of VImax. It is concluded that external cations bind competitively — in addition to membrane surface charges — to affinity sites of Ca channel, where they specifically modulate permeation of calcium.  相似文献   

6.
Summary In giant neurons of subesophageal ganglion of the Japanese land snail,Euhadra quaestia Deshayes, permeation of Zn ions through Ca channels were investigated with a conventional current clamp method.All-or-none action potentials of long duration (90 to 120 sec) were evoked in 24mm Zn containing salines. The overshoots were about +10 mV and the maximum rate of rises (MRRs) was about 2.9 V/sec. The amplitudes and the MRRs of the action potentials depended on external Zn ion concentrations.The action potentials were suppressed by specific Ca-channel inhibitors such as Co2+, La3+ and Verapamil, but they were resistant to Na-channel inhibitor, tetrodotoxin, even at 30 m.It is concluded that these action potentials are generated by Zn ions permeating Ca channels in snail neuronal membrane.On the basis of Hagiwara and Takahashi's (S. Hagiwara & K. Takahashi, 1967,J. Gen. Physiol. 50:583) model of Ca channels, it is inferred that Zn ions are 5 to 10 times stronger in affinity to Ca channels than Ca ions, but 10 to 20 times less permeable.  相似文献   

7.
With the help of a standard voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In Ca2+-dependent K+ current, we identified and studied the properties of an apamin-sensitive voltage-independent component carried through the channels of low conductance (in many publications called small conductance,I SK(Ca)). This component did not show the temporal inactivation;I SK(Ca) was insensitive to the action of 4 mM tetraethylammonium, but was completely blocked by 500 nM of apamin. It was shown thatI SK(Ca) is very sensitive to changes in the intracellular Ca2+ concentration ([Ca2+] i ): a decrease in [Ca2+] i up to 50 nM resulted in the almost complete blockade of the current. The entry of Ca ions into a cell from the external solution through the voltage-operated Ca2+ channels of L-type was not an obligatory condition for activation ofI SK(Ca). The current-voltage relationship forI SK(Ca) had a maximum within the voltage range of +20 to +50 mV. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 87–94, March–April, 2000.  相似文献   

8.
Summary Giant axons from the marine annelidMyxicola infundibulum were internally dialyzed with solutions containing22Na ions as tracers of Na efflux. In experiments performed in Li-substituted seawater, Na efflux that is dependent on external Ca ion concentration, [Ca2+] o , was measured using dialysis to maintain [Na+] i at 100mm, which enhances the [Ca2+] o -dependent Na efflux component, (i.e., reverse-mode Na/Ca exchange). When dialysis fluid contained EGTA (1mm) to buffer the internal Ca concentration, [Ca2+] i , to desired levels, Na efflux lost its normal sensitivity to external calcium. The inhibition was not simply due to the Ca-chelating action of EGTA to produce insufficient [Ca2+] i to activate Na/Ca exchange. The addition of EGTA inhibited Ca o -dependent Na efflux even when a large enough excess of [Ca2+] i was present to saturate the EGTA and still produce elevated values of [Ca2+] i . Control experiments showed that these high values of [Ca2+] i resulted in normal Na/Ca exchange in the absence of EGTA. It is concluded that the presence of EGTA itself interferes with the manifestation of reverse-mode Na/Ca exchange inMyxicola giant axons.  相似文献   

9.
Effects of the external Ca2+ concentration on the depolarization-induced transient inward Na+ current responsible for the Na+ spike in the dinoflagellate Noctiluca miliaris were examined. The peak value and the duration of the Na+ current increased when lowering the external Ca2+ concentration. The threshold potential level for activation and the reversal potential level of the current were not affected by the external Ca2+ concentration. The inactivation took place even in a solution containing EGTA with very low (<10–9 M) Ca2+ concentration. Voltage dependency of the inactivation was scarcely affected by the external Ca2+ concentration. It is concluded that inactivation of Na+ channels responsible for the current is dependent on membrane depolarization and that the external Ca2+ modulates the inactivation kinetics. Appearance of a Na+ spike in a solution with reduced Ca2+ concentration is caused by a lowered rate of inactivation of the Na+ channels.  相似文献   

10.
Summary The effects on the cytosolic Ca2+ concentration of activating cholecystokinin receptors on single mouse pancreatic acinar cells have been investigated using patch-clamp whole-cell recording of Ca2+-dependent Cl current. We used the nonsulphated octapeptide of cholecystokinin (CCK8-NS) since the effects of even high concentrations were rapidly reversible which was not the case for the sulphated octapeptide. A submaximal concentration of CCK8-NS (10nm) evoked a current response consisting of short-lasting (a few seconds) spikes, and some of these spikes were seen to trigger larger and longer (about half a minute) current pulses. At a higher concentration (100nm) CCK8-NS evoked smooth and sustained responses. The effect of CCK8-NS was almost abolished when the internal perfusion solution contained a high concentration of the Ca2+ chelator EGTA (5mm). The responses evoked by CCK8-NS were independent of the presence of Ca2+ in the external solution at least for the first 5 min of stimulation. Internal perfusion with GTP--S markedly potentiated the effect of CCK8-NS or at a higher concentration itself induced responses very similar to those normally evoked by CCK8-NS. Caffeine added to the external solution at a low concentration (0.2–1mm) enhanced weak CCK8-NS responses, whereas high caffeine concentrations always inhibited the CCK8-NS-evoked responses. These inhibitory caffeine effects were quickly reversible. Forskolin evoked a similar inhibitory effect. Intracellular heparin (200 g/ml) infusion markedly inhibited the response to CCK8-NS stimulation. We conclude that the primary effect of activating CCK receptors is to induced inositoltrisphosphate (IP3) production. IP3 evokes a small and steady Ca2+ release, and this in turn evokes pulsatile release of a larger magnitude from a caffeine-sensitive Ca2+ pool. The action of CCK is thus very similar to that previously established for muscarinic receptor activation in the same cells. Nevertheless, the pattern of the cytosolic Ca2+ fluctuations are different, and the basic process of Ca2+-induced Ca2+ release and Ca2+ signal spreading must therefore be modulated by a messenger yet unknown.  相似文献   

11.
Summary The removal of Na from the medium causes a cellular Ca uptake in the smooth muscle of the guinea pig taenia coli which is rapidly reversed if medium Na is readmitted. This net extrusion was characterized in tissues which were first Na-depleted in a zero-Na (sucrose) solution. Li was able to substitute for Na in mediating this effect. K was also able to mimic Na in this respect if the depolarization-mediated Ca influx caused by the isotonic K solution was blocked with 10–5 m D-600. The net Ca extrusion upon Na readmission was due to a small decrease in Ca influx, as well as a marked increase in the transmembrane Ca efflux rate, as revealed by45Ca washout experiments. The increased45Ca efflux upon Na readmission could be mimicked by Li, K, choline and tris. We conclude that the Na/Ca-exchange hypothesis is insufficient to explain these data, in that both Ca extrusion and45Ca efflux can be stimulated in the absence of a Na gradient, or in the absence of any monovalent cationic gradient. These observations are discussed in terms of a possible intracellular competition of Ca and monovalent cations for anionic binding sites, as well as with regard to a possible direct stimulation of a plasmalemmal CaATPase by monovalent cations.  相似文献   

12.
Primary cultures containing a high percentage of lactotrophs were obtained by dissociating the pituitary of rats following 14–18 days of lactation. Lactotrophs with a distinctive appearance were recorded after 1–35 days in vitro and identified by immunocytochemical staining for prolactin. Whole-cell voltage clamp measurements in isotonic KCl solution from a holding potential of −40 mV revealed the presence of inward-rectifying K currents with a time-dependent, Na+-independent inactivation at potentials negative to −60 mV. The time for complete inactivation was strikingly different between lactotrophs, varying between 1 sec and more than 5 sec at −120 mV, and was not related to time in culture. The reversal potential shifted 59 mV (25°C) for a tenfold change in external K+ concentration, demonstrating the selectivity of the channel for K+ over Na+. The inward-rectifying K current was blocked by 5 mm Ba2+ and partially blocked by 10 mm TEA. Chloramine-T (1 and 2 mm) produced a total block of the inward-rectifying K current in lactotrophs. Thyrotropin-releasing hormone (500 nm) significantly reduced the inward-rectifying K current in about half of the lactotrophs. This current is similar to the inward-rectifying K current previously characterized in clonal somatomammotrophic pituitary cells (GH3B6). The variability of the rate of inactivation of this current in lactotrophs and its responsiveness to TRH is discussed. Received: 28 September 1995/Revised: 11 December 1995  相似文献   

13.
Phenothiazines (PTZ) such as chlorpromazine (CPZ) or trifluoperazine (TPZ) induced a sustained divalent cation-permeable channel activity when applied on either side of inside-out patches or on external side of cell-attached patches of adult rat ventricular myocytes. The percentage of active patches was 20%. In the case of CPZ, the K dof the dose-response curve was 160 m. CPZ-activated channels were potential-independent in the physiological range of membrane potential and were permeable to several divalent ions (Ba2+, Ca2+, Mg2+, Mn2+). At least three levels of currents were usually detected with conductances of 23, 50 and 80 pS in symmetrical 96 mm Ba2+ solution and 17, 36 and 61 pS in symmetrical 96 mm Ca2+ solution. Saturation curves corresponding to the three main conductances determined in Ba2+ symmetrical solutions (tonicity compensated with choline-Cl) gave maximum conductances of 36, 81 and 116 pS (with corresponding half-saturating concentration constants of 31.5, 38 and 34.5 mm). The corresponding conductance values were estimated to 1.7, 3.3 and 5.2 pS in symmetrical 1.8 mm Ba2+ and to 1.1, 2.4 and 3.7 pS in symmetrical 1.8 mm Ca2+ (the value in normal Tyrode solution). Channels were poorly permeable to monovalent cations, such as Na, with a P Ba/P Na ratio of 10. A PTZ-induced channel activity similar to that described in cardiac cells was also observed in cultured rat aortic smooth muscle cells but not in cultured neuroblastoma cells.PTZ-activated channels described in cardiac cells appear very similar to the sporadically active divalent ion permeable channels described in a previous paper (Coulombe et al., 1989). Surprisingly, when 100 m CPZ were applied to myocytes studied in the whole-cell configuration, and maintained at a holding potential of –80 mV in the presence of 24 mm external Ca2+ or Ba2+, no detectable macroscopic inward current could be observed, whereas the L-type Ca2+ current triggered by depolarizing pulses was markedly and reversibly reduced. The possible reasons are discussed.  相似文献   

14.
Current and voltage clamp investigations of freshly isolated smooth muscle cells from guinea-pig ileum and taenia coli were performed using single suction micropipette technique. Specific membrane capacity of smooth muscle cells was calculated and accounted for 1.6 microF/cm2, with specific resistance varying from 50 to 150 k omega X cm2. Transmembrane currents consisted of two inward components, inactivating and noninactivating ones, carried by Ca2+ ions, overlapping with early activated potassium outward current. Time constant of inward current activation was not only voltage-sensitive but also ion-dependent. When Ca2+ ions in Krebs solution were replaced by Ba2+, both the rate of activation and inactivation of inward current were significantly reduced. Estimation of intracellular Ca2+ concentration increase has indicated that inward calcium current transports enough Ca2+ for direct contraction activation.  相似文献   

15.
Plant growth requires a continuous supply of intracellular solutes in order to drive cell elongation. Ion fluxes through the plasma membrane provide a substantial portion of the required solutes. Here, patch clamp techniques have been used to investigate the electrical properties of the plasma membrane in protoplasts from the rapid growing tip of maize coleoptiles. Inward currents have been measured in the whole cell configuration from protoplasts of the outer epidermis and from the cortex. These currents are essentially mediated by K+ channels with a unitary conductance of about 12 pS. The activity of these channels was stimulated by negative membrane voltage and inhibited by extracellular Ca2+ and/or tetraethylammonium-CI (TEA). The kinetics of voltage- and Ca2+-gating of these channels have been determined experimentally in some detail (steady-state and relaxation kinetics). Various models have been tested for their ability to describe these experimental data in straightforward terms of mass action. As a first approach, the most appropriate model turned out to consist of an active state which can equilibrate with two inactive states via independent first order reactions: a fast inactivation/activation by Ca2+-binding and -release, respectively (rate constants >>103 sec−1) and a slower inactivation/activation by positive/negative voltage, respectively (voltage-dependent rate constants in the range of 103 sec−1). With 10 mm K+ and 1 mm Ca2+ in the external solution, intact coleoptile cells have a membrane voltage (V) of −105 ± 7 mV. At this V, the density and open probability of the inward-rectifying channels is sufficient to mediate K+ uptake required for cell elongation. Extracellular TEA or Ca2+, which inhibit the K+ inward conductance, also inhibit elongation of auxin-depleted coleoptile segments in acidic solution. The comparable effects of Ca2+ and TEA on both processes and the similar Ca2+ concentration required for half maximal inhibition of growth (4.3 mm Ca2+) and for conductance (1.2 mm Ca2+) suggest that K+ uptake through the inward rectifier provides essential amounts of solute for osmotic driven elongation of maize coleoptiles. Received: 6 June 1995/Revised: 12 September 1995  相似文献   

16.
Cholesterol distributes at a high density in the membrane lipid raft and modulates ion channel currents. Poly(ethylene glycol) cholesteryl ether (PEG-cholesterol) is a nonionic amphipathic lipid consisting of lipophilic cholesterol and covalently bound hydrophilic PEG. PEG-cholesterol is used to formulate lipoplexes to transfect cultured cells, and liposomes for encapsulated drug delivery. PEG-cholesterol is dissolved in the external leaflet of the lipid bilayer, and expands it to flatten the caveolae and widen the gap between the two leaflets. We studied the effect of PEG-cholesterol on whole cell L-type Ca2+ channel currents (I Ca,L) recorded from cultured A7r5 arterial smooth muscle cells. The pretreatment of cells with PEG-cholesterol decreased the density of I Ca,L and augmented the voltage-dependent inactivation with acceleration of time course of inactivation and negative shift of steady-state inactivation curve. Methyl-β-cyclodextrin (MβCD) is a cholesterol-binding oligosaccharide. The enrichment of cholesterol by the MβCD:cholesterol complex (cholesterol (MβCD)) caused inhibition of I Ca,L but did not augment voltage-dependent inactivation. Incubation with MβCD increased I Ca,L, slowed the time course of inactivation and shifted the inactivation curve to a positive direction. Additional pretreatment by a high concentration of MβCD of the cells initially pretreated with PEG-cholesterol, increased I Ca,L to a greater level than the control, and removed the augmented voltage-dependent inactivation. Due to the enhancement of the voltage-dependent inactivation, PEG-cholesterol inhibited window I Ca,L more strongly as compared with cholesterol (MβCD). Poly(ethylene glycol) conferred to cholesterol the efficacy to induce sustained augmentation of voltage-dependent inactivation of I Ca,L.  相似文献   

17.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

18.
Summary The outward potassium current of rat cerebellar granule cells in culture was studied with the whole-cell patch-clamp method. Two voltage-dependent components were identified: a slow current, resembling the classical delayed rectifier current, and a fast component, similar to anI A-type current. The slow current was insensitive to 4-aminopyridine and independent of external Ca2+, but significantly inhibited by 3mM tetraethylammonium. The fast current was depressed by external 4-aminopyridine, with an ED50=0.7mM, and it was abolished by removal of divalent cations from the external medium. The sensitivity of the transient outward current to different divalent cations was investigated by equimolar substitution of Ca2+, Mn2+ and Mg2+. In 2.8mM Mn2+, the transient potassium conductance was comparable to that in 2.8mM Ca2+, while in 2.8mM Mg2+ the transient component was drastically reduced, as in the absence of any divalent cations. However, when Ca2+ was present, Mg2+ up to 5mM had no effect. The transient current increased with increasing concentrations of external Ca2+, [Ca2+] o , and the maximum conductancevs. [Ca2+] o curve could be approximated by a one-site model. In addition, the current recorded with 5.5mM BAPTA in the intracellular solution was not different from that recorded in the absence of any Ca2+ buffer. These results suggest that divalent cations modulate the potassium channel interacting with a site on the external side of the cell membrane.  相似文献   

19.
We used the patch-clamp technique to study the voltage-dependent properties of the swelling-activated Cl current (I Cl,swell) in BC3H1 myoblasts. This Cl current is outwardly rectifying and exhibits time-dependent inactivation at positive potentials (potential for half-maximal inactivation of +75 mV). Single-channel Cl currents with similar voltage-dependent characteristics could be measured in outside-out patches pulled from swollen cells. The estimated single-channel slope conductance in the region between +60 and +140 mV was 47 pS. The time course of inactivation was well described by a double exponential function, with a voltage-independent fast time constant (∼60 ms) and a voltage-dependent slow time constant (>200 ms). Recovery from inactivation, which occurred over the physiological voltage range, was also well described by a double exponential function, with a voltage-dependent fast time constant (10–80 ms) and a voltage-dependent slow time constant (>100 ms). The inactivation process was significantly accelerated by reducing the pH, increasing the Mg2+ concentration or reducing the Cl concentration of the extracellular solution. Replacing extracellular Cl by other permeant anions shifted the inactivation curve in parallel with their relative permeabilities (SCN > I > NO3 > Cl >> gluconate). A leftward shift of the inactivation curve could also be induced by channel blockers. Additionally, the permeant anion and the channel blockers, but not external pH or Mg2+, modulated the recovery from inactivation. In conclusion, our results show that the voltage-dependent properties of I Cl,swell are strongly influenced by external pH , external divalent cations, and by the nature of the permeant anion.  相似文献   

20.
The effects of angiotensin II (100 nm) on the electrical membrane properties of zona fasciculata cells isolated from calf adrenal gland were studied using the whole cell patch recording method. In current-clamp condition, angiotension II induced a biphasic membrane response which began by a transient hyperpolarization followed by a depolarization more positive than the control resting potential. These effects were abolished by Losartan (10−5 m), an antagonist of angiotensin receptors of type 1. The angiotensin II-induced transient hyperpolarization was characterized in voltage-clamp condition from a holding potential of −10 mV. Using either the perforated or the standard recording method, a transient outward current accompanied by an increase of the membrane conductance was observed in response to the hormonal stimulation. This outward current consisted of an initial fast peak followed by an oscillating or a slowly decaying plateau current. In Cl-free solution, the outward current reversed at −78.5 mV, a value close to E K. It was blocked by external TEA (20 mm) and by apamin (50 nm). In K+-free solution, the transient outward current, sensitive to Cl channel blocker DPC (400 μm), reversed at −52 mV, a more positive potential than E Cl. Its magnitude changed in the same direction as the driving force for Cl. The hormone-induced transient outward current was never observed when EGTA (5 mm) was added to the pipette solution. The plateau current was suppressed in nominally Ca2+-free solution (47% of cells) and was reversibly blocked by Cd2+ (300 μm) but not by nisoldipine (0.5–1 μm) which inhibited voltage-gated Ca2+ currents identified in this cell type. The present experiments show that the transient hyperpolarization induced by angiotensin II is due to Ca2+-dependent K+ and Cl currents. These two membrane currents are co-activated in response to an internal increase of [Ca2+] i originating from intra- and extracellular stores. Received: 29 May 1997/Revised: 4 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号