首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The previously derived optical demands for the neural superposition eye are experimentally tested in the compound eye ofMusca domestica L. The optical requirements are fulfilled except in the marginal regions.Taking into account the gradient in spatial packing density of ommatidial axes in a horizontal direction the expected torque response of the fly is calculated and compared with results obtained by Reichardt (1973). The similarity of the curves suggests that existing gradients in the part of the neural network serving this orientation behaviour may be negligible with respect to the studied geometrical gradient.  相似文献   

2.
Observations of the infrared deep pseudopupil, optical determinations of the corneal nodal point, and histological methods were used to relate the visual fields of individual rhabdomeres to the array of ommatidial optical axes in four insects with open rhabdoms: the tenebrionid beetle Zophobas morio, the earwig Forficula auricularia, the crane fly Tipula pruinosa, and the backswimmer Notonecta glauca.The open rhabdoms of all four species have a central pair of rhabdomeres surrounded by six peripheral rhabdomeres. At night, a distal pigment aperture is fully open and the rhabdom receives light over an angle approximately six times the interommatidial angle. Different rhabdomeres within the same ommatidium do not share the same visual axis, and the visual fields of the peripheral rhabdomeres overlap the optical axes of several near-by ommatidia. During the day, the pigment aperture is considerably smaller, and all rhabdomeres share the same visual field of about two interommatidial angles, or less, depending on the degree of light adaptation. The pigment aperture serves two functions: (1) it allows the circadian rhythm to switch between the night and day sampling patterns, and (2) it works as a light driven pupil during the day.Theoretical considerations suggest that, in the night eye, the peripheral retinula cells are involved in neural pooling in the lamina, with asymmetric pooling fields matching the visual fields of the rhabdomeres. Such a system provides high sensitivity for nocturnal vision, and the open rhabdom has the potential of feeding information into parallel spatial channels with different tradeoffs between resolution and sensitivity. Modification of this operational principle to suit a strictly diurnal life, makes the contractile pigment aperture superfluous, and decreasing angular sensitivities together with decreasing pooling fields lead to a neural superposition eye.Abbreviations DPP deep pseudopupil - LMC large monopolar cell  相似文献   

3.
Events in the morphogenetic furrow set the stage for all subsequent compound eye development in Drosophila. The periodic pattern of the adult eye begins in the furrow with the spaced initiation of ommatidial rudiments, the preclusters. A wave of mitosis closely follows the furrow. A cell-by-cell analysis reveals details of these events. Early stages of ommatidial assembly can be resolved using a lead sulfide stain. Overt ommatidial organization begins in the morphogenetic furrow as cells gather into periodically spaced concentric aggregates. A stereotyped sequence of cell rearrangements converts these aggregates into preclusters. In the furrow, new rows of ommatidia are initiated at the equator and grow as new clusters are added to the peripheral ends. Mitotic labeling using BrdU feeds shows that all cells not incorporated into a precluster divide. BrdU injections show that cells divide roughly simultaneously between two adjacent rows of ommatidia.  相似文献   

4.
For 100 years three ideas dominated efforts to understand the apposition compound eye. In Müller's theory, the eye viewed the panorama through an array of little windows without overlaps and without gaps, with no details within windows. Spatial resolution then depended on the interommatidial angle (Deltaphi) and the number of ommatidia. In the second proposal, the insect detected the temporal modulation of the light, which was limited by the aperture of the lens and the wavelength, assuming good focus. Modulation is the change of intensity in the receptor, usually caused by motion of a spatial contrast in the stimulus. Thirdly, motion was detected from the successive temporal modulations at adjacent visual axes. Recently, two more principles arose. The light-sensitive elements, called rhabdomeres, project through the nodal point of the lens to the outside world, and the resolution was limited by their grain size, like the pixels in a digital camera. Finally, detection of contrast and colour was limited by the signal/noise ratio (SNR) which was improved by brighter light and more visual pigment. These five physical principles provide satisfying explanations of eye function but they all originated from theory. Actual measurements of resolution depend on the operation of the test. The visual system of the honeybee recognizes a limited variety of simple cues, but there is no evidence that the pattern of ommatidial stimulation is re-assembled, or even seen. The known cues are: the temporal modulation of groups of receptors, the direction and angular velocity of motion, some measure of the spatial disruption of the pattern or the length of edge (related to spatial frequency and contrast), colour, the intensity, the position of the centre and the size of large well-separated areas of black or colour, the angle of orientation of a bar or grating, radial or tangential edges, and bilateral symmetry. Neurons connected to more than two adjacent ommatidia collaborate in the detection of cues, and the resolution depends on the neuro-sensory feature detectors at work at the time. Although some behavioural and electrophysiological measurements give a spatial resolution similar to the interommatidial angle, different spatial properties of neuro-sensory detectors predominate at different light intensities and with a diurnal rhythm. During the long history of this topic, the belief that the resolution ought to be Deltaphi has frequently been overturned by experimental measurement.  相似文献   

5.
The distribution of ommatidial diameters and interommatidial angles, as determined by measuring the angles between the optic axes of adjacent ommatidia, are mapped across the surface of the compound eyes of a variety of species selected for different adult behaviors, developmental histories, and taxonomic positions. The size of the visual fields, prey capture foveas, foveas composed of large dorsal ommatidia, and other specializations in the numbers of ommatidia that view various directions in the visual field are discussed in relation to adult behavior. Advanced species have less resemblance between their larval and adult eyes than primitive species. In contrast to their larvae, adults increase the monocular resolution of each eye at the expense of binocular vision. Most species have foveas which view in approximately the anterior direction, instead of in a region of binocular overlap, and many species have foveal bands which view along the horizon. Some advanced perching species, which approach their prey and other odonates from below, have an additional vertical foveal band that views along a vertical plane from the anterior direction to a more dorsal direction. The most unusual foveal band is seen in active flying species. The large dorsal ommatidia of the migratory Anax junius, which cover approximately one third of the eye surface, view a narrow region of the visual field that extends along a plane from the most lateral direction of one eye to a dorsal direction, and continues without interruption to the most lateral direction of the other eye.  相似文献   

6.
The functional properties of the three horizontal cells (north horizontal cell, HSN; equatorial horizontal cell, HSE; south horizontal cell, HSS) in the lobula plate of the blowflyCalliphora erythrocephala were investigated electrophysiologically. 1. The receptive fields of the HSN, HSE, and HSS cover the dorsal, equatorial and ventral part of the ipsilateral visual field, respectively. In all three cells, the sensitivity to visual stimulation is highest in the frontal visual field and decreases laterally. The receptive fields and spatial sensitivity distributions of the horizontal cells are directly determined by the position and extension of their dendritic fields in the lobula plate and the dendritic density distributions within these fields. 2. The horizontal cells respond mainly to progressive (front to back) motion and are inhibited by motion in the reverse direction, the preferred and null direction being antiparallel. The amplitudes of motion induced excitatory and inhibitory responses decline like a cosine function with increasing deviation of the direction of motion from the preferred direction. Stimulation with motion in directions perpendicular to the preferred direction is ineffective. 3. The preferred directions of the horizontal cells show characteristic gradual orientation changes in different parts of the receptive fields: they are horizontally oriented only in the equatorial region and increasingly tilted vertically towards the dorsofrontal and ventrofrontal margins of the visual field. These orientation changes can be correlated with equivalent changes in the local orientation of the lattice of ommatidial axes in the pertinent compound eye. 4. The response amplitudes of the horizontal cells under stimulation with a moving periodic grating depend strongly on the contrast frequency of the stimulus. Maximal responses were found at contrast frequencies of 2–5 Hz. 5. The spatial integration properties of the horizontal cells (studied in the HSE) are highly nonlinear. Under stimulation with extended moving patterns, their response amplitudes are nearly independent of the size of the stimuli. It is demonstrated that this response behaviour does not result from postsynaptic saturation in the dendrites of the cells. The results indicate that the horizontal system is essentially involved in the neural control of optomotor torque responses performed by the fly in order to minimize unvoluntary deviations from a straight flight course.  相似文献   

7.
The structure and optics of the mesopelagic double-eyed mysid crustacean Euchaetomera typica Sars, 1884 are described for the first time. The lateral eye is a typical refracting superposition eye with a wide field of view (172°) and low resolution (interommatidial angle of 7.3°). The antero-dorsal part of the eye is elongated due to the extension of the clear zone. This dorsal eye has a restricted field of view (33°) but much higher resolution (1.5°). The dorsal eye also uses refracting superposition optics, although the optical array is unusual as many of the peripheral ommatidia lack crystalline cones. The centre of curvature of the cornea is in front of the flattened rhabdom layer whereas the axes of the crystalline cones are centred on a point about twice as deep as the rhabdom layer. This results in a well-focused eye, free of spherical aberration. There is a remarkable similarity in eye structure between this species and some mesopelagic double-eyed euphausiid crustaceans.  相似文献   

8.
The regular organization of the ommatidial lattice in the Drosophila eye originates in the precise regulation of the proneural gene atonal (ato), which is responsible for the specification of the ommatidial founder cells R8. Here we show that Rough eye (Roi), a dominant mutation manifested by severe roughening of the adult eye surface, causes defects in ommatidial assembly and ommatidial spacing. The ommatidial spacing defect can be ascribed to the irregular distribution of R8 cells caused by a disruption of the patterning of ato expression. Disruptions in the recruitment of other photoreceptors and excess Hedgehog production in differentiating cells may further contribute to the defects in ommatidial assembly. Our molecular characterization of the Roi locus demonstrates that it is a gain-of-function mutation of the bHLH gene amos that results from a chromosomal inversion. We show that Roi can rescue the retinal developmental defect of ato1 mutants and speculate that amos substitutes for some of ato's function in the eye or activates a residual function of the ato1 allele.  相似文献   

9.
The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4–5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.B.G. is thankful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. is grateful for the support of a Smithsonian Short-Term Research Fellowship, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support  相似文献   

10.
The Drosophila eye is widely used as a model system to study neuronal differentiation, survival and axon projection. Photoreceptor differentiation starts with the specification of a founder cell R8, which sequentially recruits other photoreceptor neurons to the ommatidium. The eight photoreceptors that compose each ommatidium exist in two chiral forms organized along two axes of symmetry and this pattern represents a paradigm to study tissue polarity. We have developed a method of fluoroscopy to visualize the different types of photoreceptors and the organization of the ommatidia in living animals. This allowed us to perform an F(1) genetic screen to isolate mutants affecting photoreceptor differentiation, survival or planar polarity. We illustrate the power of this detection system using known genetic backgrounds and new mutations that affect ommatidial differentiation, morphology or chirality.  相似文献   

11.
Measurement of isometric neck torque of the locust, in response to small sinusoidal motion of visual test patterns with large stripes, shows that displacements of 20 seconds of arc are perceived by the eye. On the other hand, when stripe size is varied, the eye seems not to resolve much detail since no response is elicited by patterns with spatial period less than 3°. It is shown that these two results are not incompatible.Current procedures for comparing geometrical interference phenomena in visual reflexes with the receptor spatial sampling relevant to motion perception are extended to treat the small-signal locust experiment, and shown in general to involve larger confidence limits than usually supposed. Especially, arbitrarily weighted contributions from several ommatidial pair-types in the hexagonal lattice are permissible. Finally, consideration of the effects of receptor and other series nonlinearities on motion-perception experiments of this kind predicts particular test patterns for which visual responses should depend upon phase relations of superposed Fourier spatial components, whether the events of receptor interaction involve correlation or not.Measured effects on the reflex of pattern luminance, contrast, displacement and spatial period form a basis for the small-signal frequency analysis described in the paper which follows this one.  相似文献   

12.
We made intracellular recordings from the photoreceptors of the polarisation-sensitive dorsal rim area of the cricket compound eye combined with dye marking. By measuring visual field sizes and optical axes in different parts of the dorsal rim area, we assessed the optical properties of the ommatidia. Due to the large angular sensitivities (median about 20°) and the high sampling frequency (about 1 per degree), the visual fields overlap extensively, such that a given portion of the sky is viewed simultaneously by a large number of ommatidia. By comparing the dye markings in the retina and in the optic lobe, the axon projections of the retinula cells were examined. Receptors R1, R2, R5 and R6 project to the lamina, whereas R7 projects to the medulla. The microvilli orientation of the two projection types differ by 90° indicating the two analyser channels that give antagonistic input to polarisation-sensitive interneurons. Using the retinal marking pattern as an indicator for the quality of the intracellular recordings, the polarisation sensitivity of the photoreceptors was re-examined. The polarisation sensitivity of recordings from dye-coupled cells was much lower (median: 4.5) than that of recordings in which only one cell was marked (median: 9.8), indicating that artefactual electrical coupling between photoreceptors can significantly deteriorate polarisation sensitivity. The physiological value of polarisation sensitivity in the cricket dorsal rim area is thus typically about 10. Accepted: 4 November 1999  相似文献   

13.
Superposition optics and the time of flight in onitine dung beetles   总被引:1,自引:0,他引:1  
Dung beetles fly to fresh dung, with vision essential for flight navigation. The daily period of flight varies among different species: some beetles fly only in sunlight, others only when ambient light levels change rapidly during dusk or dawn and others in the constant dark of night. Measurements of the optical properties of the lenses, eye geometry and photoreceptor dimensions were used in a computer ray-tracing model to determine the optical performance of the superposition eyes of nine species of onitine dung beetles. Eye sensitivity to light is determined mainly by body size, by the refractive-index parameters and size of the crystalline cones, and by the photoreceptor dimensions. Based on the optics of the ommatidial lenses and absorption of light in the retina, the most sensitive eyes, found in the crepuscular-nocturnal beetles, are 85 times or nearly two log units more sensitive than the eyes of the diurnal beetles. Three possible criteria are considered to determine the best position for the retina: maximum amount of light absorbed in the target rhabdom; maximum amount of light falling on the target rhabdom (best focus); and maximum resolution. The structure and physiological optics of the superposition compound eyes of an onitine dung beetle are matched to the range of light intensities at which it flies. Accepted: 4 February 1998  相似文献   

14.
Pattern formation and ommatidial differentiation in the crayfish retina were analyzed using confocal, light and electron microscopy. Optic primordia first appear in the embryo as round elevations covered by a surface epithelial layer. Retinal differentiation begins with a wave of mitotic activity that moves across this epithelium from lateral to medial. Ommatidial cell clusters are visible at the surface along a transition zone, which lies at the interface of the medial undifferentiated retina and the lateral patterned retina. This zone is 8–10 cells wide and composed of small uniform cell profiles. Lateral to the transition zone the initial ommatidial cell clusters form staggered rows across the surface. Each first row cluster contains eight retinula cells surrounded by four cone, two corneagenous and two distal pigment cells. Ommatidial clusters in the first nine rows show significant changes in their organization, which are visible at the surface of the retina. In row 10 the retinula cells recede from the surface and the cone cells close in above them creating a constant cell pattern at the surface. Rhabdome development begins distally and extends downward as the retinula cluster recedes from the surface. Movement of the retinula cells inward and enlargement of the cone and corneagenous cells at the surface creates a two-tiered organization characteristic of each ommatidium. Comparison of retinal pattern formation and differentiation in the crayfish with retinal morphogenesis in Drosophila and other insects show several similarities between the two arthropod groups.  相似文献   

15.
The emergence of order in the Drosophila pupal retina   总被引:9,自引:0,他引:9  
During pupation, long-range order is imposed on the autonomously developing ommatidia which compose the Drosophila eye. To accomplish this, eight additional cell types arise: the primary, secondary, and tertiary pigment cells, and the four cells that form the bristle. These cells form an interweaving lattice between ommatidia. The lattice is refined when excess cells are removed to bring neighboring ommatidia into register. Recent evidence suggests that in larval development, local contacts direct cell fate. The same appears to be true during pupal development: the contacts a cell makes predict the cell type it will become. Cells which contact the anterior or posterior cone cells in an ommatidium invariably become primary pigment cells. Cells which contact primary pigment cells from different ommatidia become secondary and tertiary pigment cells. Bristle development is in several ways distinct from ommatidial development. The four cells of each bristle group appear to be immediate descendents of a single founder cell. During their early differentiation, they do not make stereotyped contacts with surrounding ommatidial cells, but do make particular contacts within the bristle group. And unlike the surrounding ommatidia, differentiation of the bristles radiates from the center of the eye to the edges. As cells are removed during two stages of programmed cell death, the bristles are brought into their final position. When all cells in the lattice have achieved their final position, a second stage of retinal development begins as structures specific to each cell type are produced. This paper follows these various stages of pupal development, and suggests how local cell-cell contacts may produce the cells needed for a functional retina.  相似文献   

16.
Key molecules which regulate the formation of the heart have been identified; however, the mechanism of cardiac morphogenesis remains poorly understood at the cellular level. We have adopted a genetic approach, which permits retrospective clonal analysis of myocardial cells in the mouse embryo, based on the targeting of an nlaacZ reporter to the alpha-cardiac actin gene. A rare intragenic recombination event leads to a clone of beta-galactosidase-positive myocardial cells. Analysis of clones at different developmental stages demonstrates that myocardial cells and their precursors follow a proliferative mode of growth, rather than a stem cell mode, with an initial dispersive phase, followed by coherent cell growth. Clusters of cells are dispersed along the venous-arterial axis of the heart tube. Coherent growth is oriented locally, with a main axis, which corresponds to the elongation of the cluster, and rows of cells, which form secondary axes. The angle between the primary and secondary axes varies, indicating independent events of growth orientation. At later stages, as the ventricular wall thickens, wedge shaped clusters traverse the wall and contain rows of cells at a progressive angle to each other. The cellular organisation of the myocardium appears to prefigure myofibre architecture. We discuss how the characteristics of myocardial cell growth, which we describe, underlie the formation of the heart tube and its subsequent regionalised expansion.  相似文献   

17.
The geographic distribution of genetic variation reflects trends in past population migrations and can be used to make inferences about these migrations. It has been proposed that the east-west orientation of the Eurasian landmass facilitated the rapid spread of ancient technological innovations across Eurasia, while the north-south orientation of the Americas led to a slower diffusion of technology there. If the diffusion of technology was accompanied by gene flow, then this hypothesis predicts that genetic differentiation in the Americas along lines of longitude will be greater than that in Eurasia along lines of latitude. We use 678 microsatellite loci from 68 indigenous populations in Eurasia and the Americas to investigate the spatial axes that underlie population-genetic variation. We find that genetic differentiation increases more rapidly along lines of longitude in the Americas than along lines of latitude in Eurasia. Distance along lines of latitude explains a sizeable portion of genetic distance in Eurasia, whereas distance along lines of longitude does not explain a large proportion of Eurasian genetic variation. Genetic differentiation in the Americas occurs along both latitudinal and longitudinal axes and has a greater magnitude than corresponding differentiation in Eurasia, even when adjusting for the lower level of genetic variation in the American populations. These results support the view that continental orientation has influenced migration patterns and has played an important role in determining both the structure of human genetic variation and the distribution and spread of cultural traits.  相似文献   

18.
Tissue polarity in Drosophila is regulated by a number of genes that are thought to function in a complex, many of which interact genetically and/or physically, co-localize, and require other tissue polarity proteins for their localization. We report the enhancement of the strabismus tissue polarity phenotype by mutations in two other tissue polarity genes, flamingo and prickle. Flamingo is autonomously required for the establishment of ommatidial polarity. Its localization is dynamic throughout ommatidial development and is dependent on Frizzled and Notch. Flamingo and Strabismus co-localize for several rows posterior to the morphogenetic furrow and subsequently diverge. While neither of these proteins is required for the other's localization, Prickle localization is influenced by Strabismus function. Our data suggest that Strabismus, Flamingo and Prickle function together to regulate the establishment of tissue polarity in the Drosophila eye.  相似文献   

19.
Pattern formation and ommatidial differentiation were examined in the developing retina of the lobster Homarus americanus using light and electron microscopy. In the lobster the retina differentiates from the surface ectoderm that covers the optic primordia. Initially a single band of proliferation moves across this surface ectoderm. Immediately following this wave of proliferation, rows of ommatidial cell clusters appear. The earliest cell clusters are often seen adjacent to dividing cells of the proliferation band. The changing organization of the first seven rows of ommatidial clusters, visible at the surface of the retina, reveals events in early ommatidial differentiation. A rosette-like cluster of 18 cells forms the first row. Each stage following the rosette clusters occurs in a separate staggered row. Developing ommatidia have a central cluster of retinula cells, whose organization changes at each stage. Four cone cells enclose the retinula cells in each cluster and extend to the surface. In the seventh row, rhabdome formation begins and the retinula cells recede, leaving only cone cells visible at the retinal surface. This change initiates the two-tiered organization of the adult ommatidium. In 70% embryos, asymmetries in the position of the R8 axon around R7 create an equatorial line separating the dorsal and ventral halves of the retina. Possible mechanisms for the formation of these asymmetries are discussed. Postembryonic growth of the retina continues in stage VI juvenile animals along the ventral edge of the retina.  相似文献   

20.
BACKGROUND: The Drosophila eye is composed of about 800 ommatidia, each of which becomes dorsoventrally polarised in a process requiring signalling through the Notch, JAK/STAT and Wingless pathways. These three pathways are thought to act by setting up a gradient of a signalling molecule (or molecules) often referred to as the 'second signal'. Thus far, no candidate for a second signal has been identified. RESULTS: The four-jointed locus encodes a type II transmembrane protein that is expressed in a dorsoventral gradient in the developing eye disc. We have analysed the function and regulation of four-jointed during eye patterning. Loss-of-function clones or ectopic expression of four-jointed resulted in strong non-autonomous defects in ommatidial polarity on the dorsoventral axis. Ectopic expression experiments indicated that localised four-jointed expression was required at the time during development when ommatidial polarity was being determined. In contrast, complete removal of four-jointed function resulted in only a mild ommatidial polarity defect. Finally, we found that four-jointed expression was regulated by the Notch, JAK/STAT and Wingless pathways, consistent with it mediating their effects on ommatidial polarity. CONCLUSIONS: The clonal phenotypes, time of requirement and regulation of four-jointed are consistent with it acting in ommatidial polarity determination as a second signal downstream of Notch, JAK/STAT and Wingless. Interestingly, it appears to act redundantly with unknown factors in this process, providing an explanation for the previous failure to identify a second signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号