首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoregulatory responses to exercise in relation to the phase of the menstrual cycle were studied in ten women taking oral contraceptives (P) and in ten women not taking oral contraceptives (NP). Each subject was tested for maximal aerobic capacity ( ) and for 50% exercise in the follicular (F) and luteal (L) phases of the menstrual cycle. Since the oral contraceptives would have prevented ovulation a quasi-follicular phase (q-F) and a quasi-luteal phase (q-L) of the menstrual cycle were assumed for P subjects. Exercise was performed on a cycle ergometer at an ambient temperature of 24° C and relative air humidity of 50%. Rectal (T re), mean skin ( ), mean body ( ) temperatures and heart rate (f c) were measured. Sweat rate was estimated by the continuous measurement of relative humidity of air in a ventilated capsule placed on the chest, converted to absolute pressure (PH2Ochest). Gain for sweating was calculated as a ratio of increase inPH2Ochest to the appropriate increase inT re for the whole period of sweating (G) and for unsteady-state (Gu) separately. The did not differ either between the groups of subjects or between the phases of the menstrual cycle. In P, rectal temperature threshold for sweating (T re, td) was 37.85° C in q-L and 37.60° C in q-F (P < 0.01) and corresponded to a significant difference fromT re at rest. TheT re, andf c increased similarly during exercise in q-F and q-L. No menstrual phase-related differences were observed either in the dynamics of sweating or in G. In NP,T re, td was shorter in L than in F (37.70 vs 37.47° C,P<0.02) with a significantly greater value fromT re at rest. The dynamics and G for sweating were also greater in L than in F. The Gu was 36.8 versus 16.6 kPa · ° C–1 (P<0.01) while G was 6.4 versus 3.8 kPa · ° C–1 (P<0.05), respectively. TheT re, andf c increased significantly more in phase F than in phase L. It was concluded that in these women performing moderate exercise, there was a greater temperature threshold and larger gains for sweating in phase L than in phase F. Intake of oral contraceptives reduced the differences in the gains for sweating making the thermoregulatory responses to exercise more uniform.  相似文献   

2.
To investigate the effects of the menstrual cycle and of exercise intensity on the relationship between finger blood flow (FBF) and esophageal temperature (Tes), we studied four women, aged 20-32 years. Subjects exercised at 40% and 70% VO2max in the semi-supine posture at an ambient temperature of 20 degrees C. Resting Tes was higher during the luteal phase than the follicular phase (P less than 0.01). There were no significant differences between the two phases in FBF, oxygen consumption, carbon dioxide production, heart rate or minute ventilation at rest and during exercise, respectively. Each regression line of the FBF-Tes relationship consists of two distinct segments of FBF change to Tes (slope 1 and 2). FBF increased at a threshold Tes for vasodilation ([Tes 0]) and the rate of FBF rise became greater at ([Tes 0]) and the rate of FBF rise became greater at another Tes above this threshold ([Tes 0']). For both levels of exercise, [Tes 0] and [Tes 0'] were shifted upward during the luteal phase, but the slopes of the FBF-Tes relationship were almost the same in the two phases of the menstrual cycle. Increasing exercise intensity induced a significant decrease in slope 1 of the FBF-Tes relationship during the follicular (P less than 0.01) and the luteal phases (P less than 0.02), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The experiment was conducted to investigate the human thermoregulatory responses during rest, exercise and recovery atT a 20°C and 60% R.H. under the conditions of wearing two different types of clothing. Six healthy men wore two types of clothing: one covering the whole body area except the head (Type A, weight 1656 g), and the other covering only the trunk, upper arms and thighs (Type B, weight 996 g). The level of rectal temperature was kept significantly higher in Type B than in Type A during rest and recovery. The increased and decreased rates of rectal temperature during exercise and recovery were significantly greater in Type A than in Type B, respectively. These findings are discussed from the viewpoint of the differences of skin temperatures of the extremities between Type A and Type B.  相似文献   

4.
J. Galisteo 《Theriogenology》2010,74(3):443-450
This paper investigated gestation length and estrus cycle characteristics in three different Spanish donkey breeds (Andalusian, Zamorano-Leones, and Catalonian) kept on farm conditions in southern Spain, using data for ten consecutive breeding seasons. Gestation length was measured in 58 pregnancies. Ovarian ultrasonography was used to detect the ovulation, in order to ascertain true gestation length (ovulation-parturition). Pregnancy was diagnosed approximately 14-18 d after ovulation and confirmed on approximately day 60. Average gestation length was 362 ±15.3 (SD) d, and no significant differences were observed between the three different breeds. Breeding season had a significant effect (P < 0.01), with longer gestation lengths when jennies were covered during the early period. Breed, age of jenny, year of birth, foal gender, month of breeding, and type of gestation had no significant effect on gestation length.After parturition, foal-heat was detected in 53.8% of the postpartum cycles studied (n = 78), and ovulation occurred on day 13.2 ± 2.7. The duration of foal-heat was 4.7 ±1.7 d, with a pregnancy rate of 40.5%.When subsequent estrus cycles were analyzed, the interovulatory interval (n = 68) and estrus duration (n = 258) were extended to a mean 23.8 ± 3.5 and 5.7 ± 2.2 d, respectively. Both variables were influenced by the year of study (P < 0.03 and P < 0.001), whereas month and season of ovulation (P < 0.005 and P < 0.009, respectively) affected only interovulatory intervals. Estrus duration was significantly longer than that observed at the foal-heat (P < 0.006), and the pregnancy rate was 65.8%.This study provides reference values for true gestation length and estrus cycle characteristics in Spanish jennies. Breeding season affected gestation length in farm conditions. Also, seasonal influence was observed on the length of the estrus cycle (i.e., interovulatory interval), although foal-heat was not affected by environmental factors.  相似文献   

5.
The primary objective of this study was to develop an automated infrared thermography platform (Estrus BenchMark) capable of measuring skin temperature and tail movements as a means of identifying cows in estrus. The secondary objective was to evaluate the accuracy of Estrus BenchMark to detect estrus compared to in-line milk progesterone (P4) analysis (Herd Navigator System) in a commercial dairy herd managed under a robotic milking system. Data were collected on forty-six cows from 45 to 120 d after calving. Cows were flagged in estrus when milk P4 fell below 5 ng/mL. The Estrus BenchMark true positive estrus alerts (Sensitivity; Se%) were compared to Herd Navigator System estrus alerts at different time-windows (±12 h, ±24 h, ±48 h, and ±72 h) relative to the Estrus BenchMark estrus alerts for all the estrus alerts (AE) and confidence-quality estrus (CQE; >80% quality) alerts identified by Herd Navigator System. The Estrus BenchMark captured skin temperature and tail movements resulting in vulva exposure (left tail movements, LTail; right tail movements, RTail; and pooled tail movements, PTail) for each milking event. Skin temperature tended to increase when the milk P4 concentration (Least-Squares Means ± SE) dropped for AE (estrus day [d 0]; P4; 3.51 ± 0.05 ng/mL, Skin temperature; 33.31 ± 2.38 °C) compared with d ?7 (P4; 20.22 ± 0.73 ng/mL; Skin temperature: 32.05 ± 3.77 °C). The increase in skin temperature, however, was significant in cows with CQE > 80% at d 0 (32.75 ± 0.29 °C) compared to d ?7 (31.80 ± 0.28 °C). The prevalence of tail movements to expose vulva was greater (P = 0.01) in AE at d 0 (LTail: 62.50%; PTail; 68.75%; and RTail: 56.25%) compared with d ?7 (LTail: 18.75%; PTail: 9.37%: and RTail: 9.37%), and d +4 (LTail: 9.37%; PTail: 9.37%; and RTail: 12.5%). Moreover, the higher prevalence of tail movements at d 0 was observed in cows with CQE > 80% (LTail; 65%, PTail; 80%, and RTail; 70%) compared to those with CQE < 80%. The highest Estrus BenchMark Youden index (YJ; 0.45), diagnostic odds ratio (DOR; 9.04), and Efficiency (0.77) were achieved for AE in a ±48 h window and at ±72 h window for CQE (YJ; 0.66, DOR; 25.29, and Efficiency 0.76) relative to Herd Navigator System estrus alerts. The highest Estrus BenchMark resulted in 58% estrus detection rates for AE and 80% for cows with CQE compared to the Herd Navigator System.  相似文献   

6.
The purpose of this study was to evaluate the effect of exercise on the subsequent post-exercise thresholds for vasoconstriction and shivering measured during water immersion. On 2 separate days, seven subjects (six males and one female) were immersed in water (37.5 degrees C) that was subsequently cooled at a constant rate of approximately 6.5 degrees C x h(-1) until the thresholds for vasoconstriction and shivering were clearly established. Water temperature was then increased to 37.5 degrees C. Subjects remained immersed for approximately 20 min, after which they exited the water, were towel-dried and sat in room air (22 degrees C) until both esophageal temperature and mean skin temperature (Tsk) returned to near-baseline values. Subjects then either performed 15 min of cycle ergometry (at 65% maximal oxygen consumption) followed by 30 min of recovery (Exercise), or remained seated with no exercise for 45 min (Control). Subjects were then cooled again. The core temperature thresholds for both vasoconstriction and shivering increased significantly by 0.2 degrees C Post-Exercise (P < 0.05). Because the Tsk at the onset of vasoconstriction and shivering was different during Pre- and Post-Exercise Cooling, we compensated mathematically for changes in skin temperatures using the established linear cutaneous contribution of skin to the control of vasoconstriction and shivering (20%). The calculated core temperature threshold (at a designated skin temperature of 32.0 degrees C) for vasoconstriction increased significantly from 37.1 (0.3) degrees C to 37.5 ( 0.3) degrees C post-exercise (P < 0.05). Likewise, the shivering threshold increased from 36.2 (0.3) degrees C to 36.5 (0.3) degrees C post-exercise (P < 0.05). In contrast to the post-exercise increase in cold thermal response thresholds, sequential measurements demonstrated a time-dependent similarity in the Pre- and Post-Control thresholds for vasoconstriction and shivering. These data indicate that exercise has a prolonged effect on the post-exercise thresholds for both cold thermoregulatory responses.  相似文献   

7.
To investigate the effects of hyperthermia and facial fanning during hyperthermia on hand-grip exercise performance and thermoregulatory response, we studied eight male subjects, aged 20-53 years. Subjects exercised at 20% of maximal hand-grip strength in the sitting position under three conditions: normothermia (NT), hyperthermia without fanning (HT-nf) or with fanning at 5.5 m X sec-1 wind speed (HT-f). Hyperthermia (0.5 degrees C higher oesophageal temperature than in NT) was induced by leg immersion in water at 42 degrees C. Mean exercise performance was markedly reduced from 716 contractions (NT) to 310 (HT-nf) by hyperthermia (P less than 0.01) and significantly (P less than 0.05) improved to 431 (HT-f) by facial fanning. Hyperthermic exercise was accompanied by significant increases in forearm blood flow (71%) and the local sweat rate on the thigh (136%) at the end of exercise compared with that in NT. Heart rate (HR) and rating of perceived exertion (RPE) increased during exercise and were higher in HT-nf than in NT at any given time of exercise. Oesophageal, tympanic (Tty) and mean skin temperatures were also significantly higher in HT-nf than in NT. Facial fanning caused a marked decrease in forehead skin temperature (1.5-2.0 degrees C) and a slight decrease in Tty, HR and PRE compared with that in HT-nf at any given time of exercise. These results suggested that hyperthermia increased thermoregulatory demands and reduced exercise performance. Facial fanning caused decreases in face skin and brain temperatures, and improved performance.  相似文献   

8.
目的研究长爪沙鼠发情周期,揭示发情规律,优化判定方法。方法连续18 d采集50只长爪沙鼠阴道上皮脱落细胞涂片,采用角化细胞计数法研究长爪沙鼠发情周期规律。比较瑞氏染色、HE染色和直接镜检判定发情周期4个时相的优缺点。结果长爪沙鼠的发情周期有稳定型、不稳定型、假孕三种类型。其中稳定型占68.6%,发情周期为(106.3±35.0)h,可分为4个时相。4个时相角化细胞的比例分别为发情前期(13.5±7.8)%、发情期(86.7±9.9)%、发情后期(27.9±12.8)%和发情间期(3.3±2.8)%。结论角化细胞计数能准确地判定长爪沙鼠的发情周期及各个时相。直接镜检法能快速反映阴道脱落细胞的形态。  相似文献   

9.
The primary objective of this investigation was to test the hypothesis that voluntary reductions in exercise intensity in heat improve heat exchange between the body and the environment, and are thus thermoregulatory behaviors. This was accomplished by observing the conscious selection of exercise intensity and the accompanying thermal outcomes of eleven moderately active males when exposed to an uncompensably hot (UNCOMP) and a compensable (COMP) thermal environment. Evidence for thermoregulatory behavior was defined relative to the specific, pre-determined definition. Self-selected exercise intensity (power output) was unanimously reduced in UNCOMP over time and relative to COMP in all the subjects. These voluntary responses were found to modify metabolic heat production over time and therefore heat exchange between the body and the environment. Likewise, the observed reductions in power output were, at least in part, due to a conscious action, that was found to be inversely related to the total body heat storage and thermal discomfort. There was no evidence for thermoregulatory behavior in COMP. These data uniquely indicate that voluntary reductions in exercise intensity improves heat exchange over time, and therefore contributes to the regulation of body temperature. These findings suggest that reductions in exercise intensity in heat are, by definition, thermoregulatory behaviors.  相似文献   

10.
This study examined the thermoregulatory responses of men (group M) and women (group F) to uncompensable heat stress. In total, 13 M [mean (SD) age 31.8 (4.7) years, mass 82.7 (12.5) kg, height␣1.79␣(0.06) m, surface area to mass ratio 2.46␣(0.18) m2 · kg−1 · 10−2, Dubois surface area 2.01 (0.16) m2, %body fatness 14.6 (3.9)%, O2peak 49.0 (4.8) ml · kg−1 · min−1] and 17 F [23.2 (4.2) years, 62.4 (7.7) kg, 1.65 (0.07) m, 2.71 (0.14) m2 · kg−1 · 10−2, 1.68 (0.13) m2, 20.2 (4.8)%, 43.2 (6.6) ml · kg−1 · min−1, respectively] performed light intermittent exercise (repeated intervals of 15 min of walking at 4.0 km · h−1 followed by 15 min of seated rest) in the heat (40°C, 30% relative humidity) while wearing nuclear, biological, and chemical protective clothing (0.29 m2 ·°C · W−1 or 1.88 clo, Woodcock vapour permeability coefficient 0.33 i m). Group F consisted of eight non-users and nine users of oral contraceptives tested during the early follicular phase of their menstrual cycle. Heart rates were higher for F throughout the session reaching 166.7 (15.9) beats · min−1 at 105 min (n = 13) compared with 145.1 (14.4) beats · min−1 for M. Sweat rates and evaporation rates from the clothing were lower and average skin temperature () was higher for F. The increase in rectal temperature (T re) was significantly faster for the F, increasing 1.52 (0.29)°C after 105 min compared with an increase of 1.37 (0.29)°C for M. Tolerance times were significantly longer for M [142.9 (24.5) min] than for F [119.3 (17.3) min]. Partitional calorimetric estimates of heat storage (S) revealed that although the rate of S was similar between genders [42.1 (6.6) and 46.1 (9.7) W · m−2 for F and M, respectively], S expressed per unit of total mass was significantly lower for F [7.76 (1.44) kJ · kg−1] compared with M [9.45 (1.26) kJ · kg−1]. When subjects were matched for body fatness (n = 8 F and 8 M), tolerance times [124.5 (14.7) and 140.3 (27.4) min for F and M, respectively] and S [8.67 (1.44) and 9.39 (1.05) kJ · kg−1 for F and M, respectively] were not different between the genders. It was concluded that females are at a thermoregulatory disadvantage compared with males when wearing protective clothing and exercising in a hot environment. This disadvantage can be attributed to the lower specific heat of adipose versus non-adipose tissue and a higher percentage body fatness. Accepted: 31 October 1997  相似文献   

11.
To investigate the hypothesis that facial cooling (FC) exerts a greater influence on the cardiovascular system at lower versus higher levels of exercise, this study examined the effect of facial cooling [mean (SE): 0 (2)°C at 0.8 m·s–1 wind velocity] during 30 min low [35% maximum oxygen consumption ( O2max)] and moderate (70% O2max) levels of cycle ergometry in the supine position. Five male subjects were assigned in random order to four exercise conditions: (1) FC at 35% O2max(FC35), (2) no cooling (NFC35), (3) FC at 70% O2max(FC70), and (4) no cooling (NFC70). Heart rate (f c), stroke volume (V s), and cardiac output ( c) were measured at rest and every 10 min of exercise using impedance cardiography. During FC35, the change in f c [mean (SE)] was significantly lower (P < 0.05) than NFC35 at 10 [22 (5) vs 31 (3) beats· min–1], 20 [29 (6) vs 35 (3) beats·min–1], and 30 [29 (5) vs 38 (4) beats·min–1] min. No differences in f c were observed between FC70 and NFC70. Furthermore, FC had no effect on V s or cat either exercise intensity. However, when comparing the FC70 and NFC70 conditions, there was a significant main effect (P<0.05) in mean arterial pressure (P a) response with cooling despite the fact that neither V s or cwere different from the NFC70 control. The increase (P < 0.05) in the estimated change in systemic vascular resistance ( a· c –1) could partly explain the relative rise in aat FC70. No pressor effect of cooling was observed at 35% O2max. The results suggest that the FC condition promotes exercise bradycardia at low levels of exercise and exerts a greater pressor response during moderate exercise.  相似文献   

12.
Trials to investigate the effects of limited suckling on sow reproduction and piglet growth were conducted using 41 first parity and 32 second parity Yorkshire sows. Separation of sows from their litters (22 hrs/day, days 21-35 postpartum) induced estrus in 60% of primiparous and 72% of second parity sows during lactation. Compared to control group animals, primiparous sows had higher weaning weights and second parity sows higher rates of embryo survival on day 30 of gestation. Piglets subjected to suckling restriction had weights, at 2 weeks after weaning, equal to those weaned after 5 weeks of unrestricted suckling. We conclude that suckling restriction can provide the dual benefits of an extended piglet nursing period and a decreased breeding to breeding interval in sows.  相似文献   

13.
Summary Four groups of male rats were exercised for periods of 2, 4, 6, and 8 weeks with controls in each group. As a result of chronic exercise there was an increase in the width of the zona fasciculata of the adrenal cortex. Also, there was an increase in the number and size of the mitochondria, and an increase in the quantity of smooth endoplasmic reticulum, and during the first 4 weeks of exercise an increase in the number of lipid droplets in the zona fasciculata. The close relationship between the smooth endoplasmic reticulum and the mitochondria, and the relationship between the smooth endoplasmic reticulum and the lipid droplets suggests a possible means for a transport mechanism for movement of precursors between these organelles.This research was supported in part by a Public Health Research Career Development Award KO4 GM42,355 from the National Institute of General Medical Sciences  相似文献   

14.
Lack of accuracy in estrus detection in cattle is a major constraint affecting the implementation of techniques such as artificial insemination (AI) and embryo transfer (ET). For this reason clinicians have opted to pharmacologically manipulate the estrus cycle. The advantages and shortcomings of using this approach to improve the implementation of AI and ET are discussed in this review. Moreover, in order to highlight the reasons why estrus detection is difficult in cows kept at grazing in the tropics, this review underlines social and behavioral traits hindering the capacity of the casual observer to accurately identify cows in estrus.  相似文献   

15.
To identify the effects of exercise recovery mode on cutaneous vascular conductance (CVC) and sweat rate, eight healthy adults performed two 15-min bouts of upright cycle ergometry at 60% of maximal heart rate followed by either inactive or active (loadless pedaling) recovery. An index of CVC was calculated from the ratio of laser-Doppler flux to mean arterial pressure. CVC was then expressed as a percentage of maximum (%max) as determined from local heating. At 3 min postexercise, CVC was greater during active recovery (chest: 40 +/- 3, forearm: 48 +/- 3%max) compared with during inactive recovery (chest: 21 +/- 2, forearm: 25 +/- 4%max); all P < 0.05. Moreover, at the same time point sweat rate was greater during active recovery (chest: 0.47 +/- 0.10, forearm: 0.46 +/- 0.10 mg x cm(-2) x min(-1)) compared with during inactive recovery (chest: 0.28 +/- 0.10, forearm: 0.14 +/- 0.20 mg x cm(-2) x min(-1)); all P < 0.05. Mean arterial blood pressure, esophageal temperature, and skin temperature were not different between recovery modes. These data suggest that skin blood flow and sweat rate during recovery from exercise may be modulated by nonthermoregulatory mechanisms and that sustained elevations in skin blood flow and sweat rate during mild active recovery may be important for postexertional heat dissipation.  相似文献   

16.
17.
The present study was performed to investigate the effects of a combination of intermittent exposure to hypoxia during exercise training for short periods on ventilatory responses to hypoxia and hypercapnia (HVR and HCVR respectively) in humans. In a hypobaric chamber at a simulated altitude of 4,500 m (barometric pressure 432 mmHg), seven subjects (training group) performed exercise training for 6 consecutive days (30 min · day−1), while six subjects (control group) were inactive during the same period. The HVR, HCVR and maximal oxygen uptake (O2 max) for each subject were measured at sea level before (pre) and after exposure to intermittent hypoxia. The post exposure test was carried out twice, i.e. on the 1st day and 1 week post exposure. It was found that HVR, as an index of peripheral chemosensitivity to hypoxia, was increased significantly (P < 0.05) in the control group after intermittent exposure to hypoxia. In contrast, there was no significant increase in HVR in the training group after exposure. The HCVR in both groups was not changed by intermittent exposure to hypoxia, while O2 max increased significantly in the training group. These results would suggest that endurance training during intermittent exposure to hypoxia depresses the increment of chemosensitivity to hypoxia, and that intermittent exposure to hypoxia in the presence or absence of exercise training does not induce an increase in the chemosensitivity to hypercapnia in humans. Accepted: 18 March 1998  相似文献   

18.
Based on the hypothesis that the relation between sweating rate and body temperature should be different during exercise and rest after exercise, we compared the sweating response during exercise and recovery at a similar body temperature. Healthy male subjects performed submaximal exercise (Experiment 1) and maximal exercise (Experiment 2) in a room at 27° C and 35% relative humidity. During exercise and recovery of 20 min after exercise, esophageal temperature (Tes), mean skin temperature, mean body temperature ( ), chest sweating rate ( ), and the frequency of sweat expulsion (F SW) were measured. In both experiments, andF SW were clearly higher during exercise than recovery at a similar body temperature (Tes, ). was similar during exercise and recovery, or a little less during the former, at a similarF SW. It is concluded that the sweating rate during exercise is greater than that during recovery at the same body temperature, due to greater central sudomotor activity during exercise. The difference between the two values is thought to be related to non-thermal factors and the rate of change in mean skin temperature.  相似文献   

19.
We assessed the effects of aerobic and/or resistance training on thermoregulatory responses in older men and analyzed the results in relation to the changes in peak oxygen consumption rate (VO(2 peak)) and blood volume (BV). Twenty-three older men [age, 64 +/- 1 (SE) yr; VO(2 peak), 32.7 +/- 1.1 ml. kg(-1). min(-1)] were divided into three training regimens for 18 wk: control (C; n = 7), aerobic training (AT; n = 8), and resistance training (RT; n = 8). Subjects in C were allowed to perform walking of ~10,000 steps/day, 6-7 days/wk. Subjects in AT exercised on a cycle ergometer at 50-80% VO(2 peak) for 60 min/day, 3 days/wk, in addition to the walking. Subjects in RT performed a resistance exercise, including knee extension and flexion at 60-80% of one repetition maximum, two to three sets of eight repetitions per day, 3 days/wk, in addition to the walking. After 18 wk of training, VO(2 peak) increased by 5.2 +/- 3.4% in C (P > 0.07), 20.0 +/- 2.5% in AT (P < 0.0001), and 9.7 +/- 5.1% in RT (P < 0.003), but BV remained unchanged in all trials. In addition, the esophageal temperature (T(es)) thresholds for forearm skin vasodilation and sweating, determined during 30-min exercise of 60% VO(2 peak) at 30 degrees C, decreased in AT (P < 0.02) and RT (P < 0.02) but not in C (P > 0.2). In contrast, the slopes of forearm skin vascular conductance/T(es) and sweat rate/T(es) remained unchanged in all trials, but both increased in subjects with increased BV irrespective of trials with significant correlations between the changes in the slopes and BV (P < 0.005 and P < 0.0005, respectively). Thus aerobic and/or resistance training in older men increased VO(2 peak) and lowered T(es) thresholds for forearm skin vasodilation and sweating but did not increase BV. Furthermore, the sensitivity of the increase in skin vasodilation and sweating at a given increase in T(es) was more associated with BV than with VO(2 peak).  相似文献   

20.
Athletes with spinal cord injury (SCI), and in particular tetraplegia, have an increased risk of heat strain and consequently heat illness relative to able-bodied individuals. Strategies that reduce the heat strain during exercise in a hot environment may reduce the risk of heat illness. To test the hypotheses that precooling or cooling during intermittent sprint exercise in a heated environment would attenuate the rise in core temperature in tetraplegic athletes, eight male subjects with SCI (lesions C(5)-C(7); 2 incomplete lesions) undertook four heat stress trials (32.0 +/- 0.1 degrees C, 50 +/- 0.1% relative humidity). After assessment of baseline thermoregulatory responses at rest for 80 min, subjects performed three intermittent sprint protocols for 28 min. All trials were undertaken on an arm crank ergometer and involved a no-cooling control (Con), 20 min of precooling (Pre), or cooling during exercise (Dur). Trials were administered in a randomized order. After the intermittent sprint protocols, mean core temperature was higher during Con (37.3 +/- 0.3 degrees C) compared with Pre and Dur (36.5 +/- 0.6 degrees C and 37.0 +/- 0.5 degrees C, respectively; P < 0.01). Moreover, perceived exertion was lower during Pre (13 +/- 2; P < 0.01) and Dur (12 +/- 1; P < 0.01) compared with Con (14 +/- 2). These results suggest that both precooling and cooling during intermittent sprint exercise in the heat reduces thermal strain in tetraplegic athletes. The cooling strategies also appear to show reduced perceived exertion at equivalent time points, which may translate into improved functional capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号