首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

2.
The purpose of the present study was to examine the effect of water temperature on the human body during low-intensity prolonged swimming. Six male college swimmers participated in this study. The experiments consisted of breast stroke swimming for 120 minutes in 23 degrees C, 28 degrees C and 33 degrees C water at a constant speed of 0.4 m.sec-1 in a swimming flume. The same subjects walked on a treadmill at a rate of approximately 50% of maximal oxygen uptake (VO2max) at the same relative intensity as the three swimming trials. Rectal temperature (Tre) in 33 degrees C water was unchanged during swimming for 120 minutes. Tre during treadmill walking increased significantly compared to the three different swimming trials. Tre, mean skin temperature (Tsk) and mean body temperature (Tb) in 23 degrees C and 28 degrees C water decreased significantly more than in both the 33 degrees C water and walking on land. VO2 during swimming in 23 degrees C water increased more than during swimming in the 28 degrees C and 33 degrees C trials; however, there were no significant differences in VO2 between the 23 degrees C swimming trial and treadmill walking. Heart rate (HR) during treadmill walking on land increased significantly compared with HR during the three swimming trials. Plasma adrenaline concentration at the end of the treadmill walking was higher than that at the end of each of the three swimming trials. Noradrenaline concentrations at the end of swimming in the 23 degrees C water and treadmill walking were higher than those during the other two swimming trials. Blood lactate concentration during swimming in 23 degrees C water was higher than that during the other two swimming trials and walking on land. These results suggest that the balance of heat loss and heat production is maintained in the warm water temperature. Therefore, a relatively warm water temperature may be desirable when prolonged swimming or other water exercise is performed at low intensity.  相似文献   

3.
Thermoregulation, metabolism, and stages of sleep in cold-exposed men   总被引:2,自引:0,他引:2  
Four naked men, selected for their ability to sleep in the cold, were exposed to an ambient temperature (Ta) of 21 degrees C for five consecutive nights. Electrophysiological stages of sleep, O2 consumption (VO2), and skin (Tsk), rectal (Tre), and tympanic (Tty) temperatures were recorded. Compared with five nights at a thermoneutral Ta of 29 degrees C, cold induced increased wakefulness and decreased stage 2 sleep, without significantly affecting other stages. Tre and Tty declined during each condition. The decrease in Tre was greater at 21 degrees C than at 29 degrees C, whereas Tty did not differ significantly between conditions. Increases in Tty following REM sleep onset at 21 degrees C were negatively correlated with absolute Tty. VO2 and forehead Tsk also increased during REM sleep at both TaS, whereas Tsk of the limb extremities declined at 21 degrees C. Unsuppressed REM sleep in association with peripheral vasoconstriction and increased Tty and VO2 in cold-exposed humans, do not signify an inhibition of thermoregulation during this sleep stage as has been observed in other mammals.  相似文献   

4.
In six male subjects the sweating thresholds, heart rate (fc), as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (Ta) of 5 degrees C (LT) and 24 degrees C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P less than 0.05). During 20-min exercise at 40% VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (Tre) but at lower mean skin (Tsk) and mean body temperatures (Tb) in LT than MT experiments (P less than 0.001). The exercise induced VO2 increase was greater only at the end of the light (40% VO2max) exercise in the cold in comparison with MT (P less than 0.001). Both fc and blood lactate concentration [1a]b were lower at the end of LT than MT for moderate (60% VO2max) and heavy (80% VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower Tb and Tsk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24 degrees C since the increases in Tre, fc and [1a]b were lower at the lower Ta.  相似文献   

5.
Seven lean and five obese boys, aged 9-12 yr, exercised in four environments: 21.1, 26.7, 29.4, and 32.2 degrees C Teff. Subjects walked on a treadmill at 4.8 km/h, 5% grade for three 20-min exercise bouts separated by 5-min rest periods. Rectal temperature (Tre), skin temperature (Tsk), heart rate (HR), sweat rate, and oxygen uptake (VO2) were measured periodically throughout the session. Lean boys had lower Tre and HR than obese boys in each of the environments. Increases in Tre were significantly greater for the obese at 26.7 and 29.4 degrees C Teff. No significant differences in Tsk and sweat rate (g-m-2-h-1) were observed between lean and obese boys. Obese boys had significantly lower oxygen consumptions per kg but worked at a significantly higher percentage of VO2max than lean boys when performing submaximal work. Responses of the obese boys to exercise in the heat were similar to those of heavy prepubertal girls studied previously, except that the boys were more tolerant of exercise at 32.2 degrees C Teff than the girls. Lean boys had lower HR than lean girls in each environment, but lower Tre only at 32.2 degrees C Teff.  相似文献   

6.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Control of heat-induced cutaneous vasodilatation in relation to age   总被引:1,自引:0,他引:1  
Well matched unacclimatised older (age 55-68, 4 women, 2 men) and younger (age 19-30, 4 women, 2 men) subjects performed 75 min cycle exercise (approximately 40% VO2max) in a hot environment (37 degrees C, 60% rh). Rectal temperature (Tre), mean skin temperature (Tsk), arm blood flow (ABF, strain gauge plethysmography), and cardiac output (Q, CO2 rebreathing) were measured to examine age-related differences in heat-induced vasodilatation. Tre and Tsk rose to the same extent in each group during the exposure. There was no significant intergroup difference in sweat rate (older: 332 +/- 43 ml.m-2.h-1, younger: 435 +/- 49 ml.m-2.h-1; mean +/- SEM). However, the older subjects responded to exercise in the heat with a lower ABF response which could be attributed to a lower Q for the same exercise intensity. The slope of the ABF-Tre relationship was attenuated in the older subjects (9.3 +/- 1.3 vs 17.9 +/- 3.3 ml.100 ml-1.min-1.degrees C-1, p less than 0.05), but the Tre threshold for vasodilatation was about 37.0 degrees C for both groups. These results suggest an altered control of skin vasodilatation during exercise in the heat in older individuals. This attenuated ABF response appears to be unrelated to VO2max, and may reflect an age-related change in thermoregulatory cardiovascular function.  相似文献   

8.
To determine effects on metabolic responses, subjects were exposed to four environmental conditions for 90 min at rest followed by 30 min of exercise: breathing room air with an ambient temperature of 25 degrees C (NN); breathing room air with an ambient temperature of 8 degrees C (NC); hypoxia (induced by breathing 12% O2 in N2) with a neutral temperature (HN); and hypoxia in the cold (HC). Hypoxia increased heart rate (HR), systolic blood pressure (SBP), pulmonary ventilation (VE), respiratory exchange ratio (R), blood lactate, and perceived exertion during exercise while depressing rectal temperature (Tre) and O2 uptake (VO2). Cold exposure elevated SBP, diastolic blood pressure (DBP), VE, VO2, blood glucose, and blood glycerol but decreased HR, Tre, and R. Shivering and DBP were higher and Tre was lower in HC compared with NC. HR, SBP, VE, R, and lactate tended to be higher in HC compared with NC, whereas VO2 and blood glycerol tended to be depressed. These results suggest that cold exposure during hypoxia results in an increased reliance on shivering for thermogenesis at rest whereas, during exercise, heat loss is accelerated.  相似文献   

9.
Ten women [mean maximal O2 uptake (VO2max), 2.81 l X min-1] exercised for 15 min on a cycle ergometer in the middle of the luteal phase (L) and in the early follicular phase (F) of the menstrual cycle at the same constant work rates (mean 122 W) and an ambient temperature of 18 degrees C. Serum progesterone averaged 44.7 nmol X l-1 in L and 0.7 nmol X l-1 in F. After a 4-h resting period, exercise was performed between 3 and 4 A.M., when the L-F core temperature difference is maximal. Preexercise esophageal (Tes), tympanic (Tty), and rectal (Tre) temperatures averaged 0.6 degrees C higher in L. During exercise Tes, Tty, and Tre averaged 0.5 degrees C higher. The thresholds for chest sweating and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were elevated in L by an average of 0.47 degrees C, related to mean body temperature (Tb(es) = 0.87Tes + 0.13Tskin), Tes, Tty, or Tre. The above-threshold chest sweat rate and cutaneous heat clearances were also increased in L. The mean exercise heart rate was 170.0 beats X min-1 in L and 163.8 beats X min-1 in F. The mean exercise VO2 in L (2.21 l X min-1) was 5.2% higher than in F (2.10 l X min-1), the metabolic rate was increased in L by 5.6%, but the net efficiency was 5.3% lower. No significant L-F differences in the respiratory exchange ratio and postexercise plasma lactate were demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The influence of exercise intensity on thermoregulation was studied in 8 men and 8 women volunteers during three levels of arm-leg exercise (level I: 700 ml oxygen (O2).min-1; level II: 1250 ml O2.min-1; level III: 1700 ml O2.min-1) for 1 h in water at 20 and 28 degrees C (Tw). For the men in Tw 28 degrees C the rectal temperature (Tre) fell 0.79 degree C (P less than 0.05) during immersion in both rest and level-I exercise. With level-II exercise a drop in Tre of 0.54 degree C (P less than 0.05) was noted, while at level-III exercise Tre did not change from the pre-immersion value. At Tw of 20 degrees C, Tre fell throughout immersion with no significant difference in final Tre observed between rest and any exercise level. For the women at rest at Tw 28 degrees C, Tre fell 0.80 degree C (P less than 0.05) below the pre-immersion value. With the two more intense levels of exercise Tre did not decrease during immersion. In Tw 20 degrees C, the women maintained higher Tre (P less than 0.05) during level-II and level-III exercise compared to rest and exercise at level I. The Tre responses were related to changes in tissue insulation (I(t)) between rest and exercise with the largest reductions in I(t) noted between rest and level-I exercise across Tw and gender. For mean and women of similar percentage body fat, decreases in Tre were greater for the women at rest and level-I exercise in Tw 20 degrees C (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We investigated whether menstrual cycle phase would affect temperature regulation during an endurance exercise bout performed at room temperature (Ta) of 22 degrees C and 60% relative humidity. Nine eumenorrheic women [age 27.2 +/- 3.7 yr, peak O2 uptake (VO2) 2.52 +/- 0.35 l/min] performed 60 min of cycle exercise at 65% of peak VO2. Subjects were tested in both midfollicular (F) and midluteal (L) phases, although one woman did not show a rise in serum progesterone (P4) that is typically evident 1 wk after ovulation. VO2, rectal (Tre) and skin (Tsk) temperatures, heart rates (HR), and ratings of perceived exertion (RPE) were measured throughout exercise. Sweat loss (SL) was estimated from pre- and postexercise body weight differences. VO2, SL, and Tsk were not affected by menstrual cycle phase. Preexercise Tre was 0.3 degrees C higher during L than during F conditions, and this difference increased to 0.6 degrees C by the end of exercise (P less than 0.01). Compared with F, HRs during L were approximately 10 beats/min greater (P less than 0.001) at all times, whereas RPE responses were significantly greater (P less than 0.01) by 50 min of cycling. No differences in any measured values were found in the subject whose P4 was low in both test conditions. Results indicate that thermoregulation (specifically, regulation of Tre), as well as cardiovascular strain and perception of exercise, was adversely affected during the L phase.  相似文献   

12.
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS.In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.  相似文献   

13.
This study examined the effect of acute exposure of the whole body to cold on blood lactate response during incremental exercise. Eight subjects were tested with a cycle ergometer in a climatic chamber, room temperature being controlled either at 24 degrees C (MT) or at -2 degrees C (CT). The protocol consisted of a step increment in exercise intensity of 30 W every 2 min until exhaustion. Oxygen consumption (VO2) was measured at rest and during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for estimations of plasma norepinephrine (NE), epinephrine (E), free fatty acid (FFA) and glucose concentrations, during the last 15 s of each exercise step and also during the 1st, 4th, 7th, and the 10th min following exercise for the determination of blood lactate (LA) concentration. The VO2 was higher during CT than during MT at rest and during nearly every exercise intensity. At CT, lactate anaerobic threshold (LAT), determined from a marked increase of LA above resting level, increased significantly by 49% expressed as absolute VO2, and 27% expressed as exercise intensity as compared with MT. The LA tended to be higher for light exercise intensities and lower for heavy exercise intensities during CT than during MT. The E and NE concentrations increased during exercise, regardless of ambient temperature. Furthermore, at rest and at exhaustion E concentrations did not differ between both conditions, while NE concentrations were greater during CT than during MT. Moreover, an increase off FFA was found only during CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Whether increasing respiratory heat loss (RHL) during exercise under heat stress can contain elevation of rectal temperature (Tre) was examined. Eight men cycled twice at 45-50% their maximum work rate until exhaustion at ambient temperature and relative humidity of 38 degrees C and 90-95%, respectively. They inspired either cold (3.6 degrees C) or ambient air in random sequence. When subjects breathed cold air during 23 min of exercise, a ninefold increase in RHL was observed vs. similar work during hot air inhalation (32.81 vs. 3.46 W). Respiratory frequency (f) and rate of rise in Tre decreased significantly (P less than or equal to 0.004 and P less than or equal to 0.002, respectively). The rise in skin temperature in each inhalant gas condition was accompanied by a parallel almost equal increase in core temperature above basal (delta Tre) for equivalent gains in skin temperature. The increase in tidal volume and decreased f in the cold condition allowed more effective physical conditioning of cold inspirate gas in the upper airways and aided RHL. Cold air inhalation also produced a significant (P less than or equal to 0.05) decrease in heart rate vs. hot air inhalation in the final stages of exercise. Insignificant changes in O2 consumption and total body fluid loss were found. These data show that cold air inhalation during exercise diminishes elevation of Tre and suggest that both the intensity and duration of work can thus be extended. The importance of the physical exchange of heat energy and any physiological mechanisms induced by the cold inspirate in producing the changes is undetermined.  相似文献   

15.
Previous work has suggested that men (M) are more sensitive to cold stress than women. There have also been observations that suggest that amenorrheic women (AW) are less thermally responsive than eumenorrheic women (EW). We investigated the hypothesis that M, EW, and AW would have different responses to cold stress. The subjects (6/group) were tested four times: twice at rest for 60 min (5 and 22 degrees C) and twice in a progressive exercise test (5 and 22 degrees C). At rest at 22 degrees C AW had a lower O2 uptake (VO2) than M and lower rectal (Tre) and finger temperatures than EW. At rest at 5 degrees C both AW and EW had lower skin temperature (Tsk) than M, but there were no group differences in peripheral Tsk sites. M increased VO2 after 10 min and EW after 20 min of cold stress; however, AW did not increase metabolism until 60 min. In the two exercise tests Tre increased in proportion to relative work load; in the 5 degrees C test there was little evidence that exercise increased Tsk sites above rest levels. Few of the metabolic or thermal differences could be accounted for by body fatness, body surface area (BSA), or BSA/kg. The data support the hypothesis that M, EW, and AW have different responses to cold stress.  相似文献   

16.
Changes in body temperature, oxygen uptake (VO2), heart rate (HR), sweating rate and plasma osmolarity were examined in 10 human subjects, performing four successive 30 min exercise-bouts of the same intensity (50% VO2 max) separated by 30 min rest periods. In spite of the rest intervals and replacement of body fluid loss there was a progressive increase in VO2. HR, rectal (Tre) and mean body (Tb) temperatures in consecutive exercise bouts. The thermoregulatory efficiency showed an increasing tendency, and a delay in the sweating response at the beginning of each exercise was shortened. It is concluded that a drift in metabolic and temperature responses to exercise, reported throughout a long-term continuous work, occurs also in the euhydrated subjects performing a prolonged intermittent exercise. It is not caused by an impaired thermoregulation during exercise but rather by insufficient restitution of metabolic processes during rest intervals.  相似文献   

17.
Core temperature "null zone".   总被引:1,自引:0,他引:1  
An experimental protocol was designed to investigate whether human core temperature is regulated at a "set point" or whether there is a neutral zone between the core thresholds for shivering thermogenesis and sweating. Nine male subjects exercised on an underwater cycle ergometer at a work rate equivalent to 50% of their maximum work rate. Throughout an initial 2-min rest period, the 20-min exercise protocol, and the 100-min recovery period, subjects remained immersed to the chin in water maintained at 28 degrees C. On completion of the exercise, the rate of forehead sweating (Esw) decayed from a mean peak value of 7.7 +/- 4.2 (SD) to 0.6 +/- 0.3 g.m-2.min-1, which corresponds to the rate of passive transpiration, at core temperatures of 37.42 +/- 0.29 and 37.39 +/- 0.48 degrees C, as measured in the esophagus (Tes) and rectum (Tre), respectively. Oxygen uptake (VO2) decreased rapidly from an exercising level of 2.11 +/- 0.25 to 0.46 +/- 0.09 l/min within 4 min of the recovery period. Thereafter, VO2 remained stable for approximately 20 min, eventually increased with progressive cooling of the core region, and was elevated above the median resting values determined between 15 and 20 min at Tes = 36.84 +/- 0.38 degrees C and Tre = 36.80 +/- 0.39 degrees C. These results indicate that the core temperatures at which sweating ceases and shivering commences are significantly different (P less than 0.001) regardless of whether core temperature is measured within the esophagus or rectum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
This study examined the cortisol response to incremental exercise; specifically to see if there was an increase in blood cortisol levels at low intensity exercise (i.e., < 60% VO2 intensity threshold) and determine whether a linear relationship existed between the blood cortisol responses and exercise of increasing workloads (i.e., intensity). Healthy, physically active young men (n = 11) completed exercise tests involving progressive workload stages (3 min) to determine peak oxygen uptake responses (VO2). Blood specimens were collected at rest and at the end of each stage and analyzed for cortisol. Results showed cortisol was significantly increased from resting levels at the end of the first exercise stage (80 W; 41.9 +/- 5.4% peak VO2) and remained significantly elevated from rest until the exercise ended. Interestingly, however, the cortisol concentrations observed at 80 W through 200 W did not significantly differ from one another. Thereafter, during the final two stages of exercise the cortisol concentrations increased further (p < 0.01). The subjects exceeded their individual lactate thresholds over these last two stages of exercise. Regression modeling to characterize the cortisol response resulted in significant regression coefficients (r = 0.415 [linear] and r = 0.655 [3rd order polynominal], respectively; p < 0.05). Comparative testing (Hotelling test) between the two regression coefficents revealed the polynominal model (sigmoidal curve) was the significantly stronger of the two (p = 0.05). In conclusion, the present findings refute the concept that low intensity exercise will not provoke a significant change in blood cortisol levels and suggest the response to incremental exercise involving increasing exercise workloads (i.e., intensities) are not entirely linear in nature. Specifically, a sigmoid curve more highly accurately characterizes the cortisol response to such exercise.  相似文献   

19.
This study examined the effect of exposure of the whole body to moderate cold on blood lactate produced during incremental exercise. Nine subjects were tested in a climatic chamber, the room temperature being controlled either at 30 degrees C or at 10 degrees C. The protocol consisted of exercise increasing in intensity in 35 W increments every 3 min until exhaustion. Oxygen consumption (VO2) was measured during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for the measurement of blood glucose, free fatty acid (FFA), noradrenaline (NA) and adrenaline (A) concentrations and, during the last 15 s of each exercise intensity, for the determination of blood lactate concentration [la-]b. The VO2 was identical under both environments. At 10 degrees C, as compared to 30 degrees C, the lactate anaerobic threshold (Than,la-) occurred at an exercise intensity 15 W higher and [la-]b was lower for submaximal intensities above the Than,la-. Regardless of ambient temperature, glycaemia, A and NA concentrations were higher at exhaustion while FFA was unchanged. At exhaustion the NA concentration was greater at 10 degrees C [15.60 (SEM 3.15) nmol.l-1] than at 30 degrees C [8.64 (SEM 2.37) nmol.l-1]. We concluded that exposure to moderate cold influences the blood lactate produced during incremental exercise. These results suggested that vasoconstriction was partly responsible for the lower [la-]b observed for submaximal high intensities during severe cold exposure.  相似文献   

20.
Thermoregulatory responses were studied in 10 men and 8 women at rest in air and during 1-h immersion in water at 20, 24, and 28 degrees C. For men of high body fat (27.6%), rectal temperature (Tre) and oxygen consumption (VO2) were maintained at air values at all water temperatures (Tw). For men of average (16.8%) and low (9.2%) fat the change in Tre (delta Tre) was inversely related to body fat at all Tw with VO2 increasing to 1.07 l X min-1 for a -1.6 degrees C delta Tre for lean men. For women of average (25.2%) and low (18.5%) fat Tre decreased steadily during immersion at all Tw. The greatest changes occurred at 20 degrees C with little differences in delta Tre and VO2 noted between these groups of women. In comparison with males of similar percent fat, Tre dropped to a greater extent (P less than 0.05) in females at 20 and 24 degrees C. Stated somewhat differently, lean women with twice the percentage of fat have similar delta Tre as lean men at all Tw. For delta Tre greater than -1.0 degree C men showed significantly greater (P less than 0.05) thermogenesis compared with women. The differences in thermoregulation between men and women during cold stress at rest may be due partly to the sensitivity of the thermogenic response as well as the significant differences in lean body weight and surface area-to-mass ratio between the sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号