首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental rectangular airlift reactor having mesh baffle-plates has been fabricated out of Perspex and compared with conventional airlift and bubble column in terms of gas holdup, volumetric mass transfer coefficient and mixing time. Mesh baffle-plates improved mass transfer and mixing with the mass transfer coefficient of the proposed reactor being up to 12% higher than that in a conventional airlift reactor under the same operating condition. The mixing time of the proposed reactor can be 95% lower than that of the airlift reactor.  相似文献   

2.
A pilot scale system and a computer model have been developed to evaluate the performances of a novel straw pyrolyzer based on direct (convective) heating. A horizontal cylindrical reactor is continuously fed from the end by straw, while hot gas enters through holes distributed along the lateral surface. The model includes the unsteady, two-dimensional conservation equations of heat and mass transfer for the solid and the gas phase, the generalized Darcy law and a multi-step devolatilization mechanism. Numerical simulations have been carried out to investigate the influences of gas temperature and gas to straw ratio. It was found that the key parameter for high conversion of straw to volatile products and char is the solid residence time. Predicted and measured conversion efficiencies compared well.  相似文献   

3.
An airlift reactor with double net draft tubes was developed. A sparger was located between the two draft tubes. The draft tubes had a significant effect on breaking bubbles into smaller ones. The assessment of the reactor performance was based on gas holdup, mixing time, and volumetric mass transfer coefficient. The proposed reactor had higher gas holdup and volumetric mass transfer coefficient, and lower mixing time in comparison with those of the bubble column. Application of the proposed reactor to fermentation of Saccharomyces cerevisiae demonstrated that the cultivation time was significantly shortened.  相似文献   

4.
Jet aerated loop reactors (JLRs) provide high mass transfer coefficients (kLa) and can be used for the intensification of mass transfer limited reactions. The jet loop reactor achieves higher kLa values than a stirred tank reactor (STR). The improvement relies on significantly higher local power inputs (~104) than those obtainable with the STR. Operation at high local turnover rates requires efficient macromixing, otherwise reactor inhomogeneities might occur. If sufficient homogenization is not achieved, the selectivity of the reaction and the respective yields are decreased. Therefore, the balance between mixing and mass transfer in jet loop reactors is a critical design aspect. Monitoring the dissolved oxygen levels during the turnover of a steady sodium sulfite feed implied the abundance of gradients in the JLR. Prolonged mixing times at identical power input and aeration rates (~100%) were identified for the JLR in comparison to the STR. The insertion of a draft tube to the JLR led to a more homogenous dissolved oxygen distribution, but unfortunately a reduction of mixing time was not achieved. In case of increased medium viscosities as they may arise in high cell density cultivations, no gradient formation was detected. However, differences in medium viscosity significantly altered the mass transfer and mixing performance of the JLR.  相似文献   

5.
A mathematical model is proposed for the fluidized bed biofilm reactor (FBBR). For individual biofilm-covered particles (bioparticles) within the reactor, an analysis of intrabiofilm mass transfer and simultaneous intrinsic zero order reaction yields an effectiveness factor expression which is a function of the modified, zero order Thiele modulus, Φ0,m. This expression is linked to a one-dimensional reactor flow model and a fluidization model to yield an overall reactor model describing convective transport and simultaneous biochemical conversion of substrate within a FBBR. For Φ0,m<1.15, FBBR is mass transfer limited and 0.45 order kinetics are observed. For Φ0,m<1.15, mass transfer limitations are insignificant and intrinsic zero order kinetics are observed. A sensitivity analysis using the proposed mathematical model indicates that biofilm thickness and media size are the two most important operating parameters. These two parameters can be optimized simultaneously for a specific application. The proposed model provides a rational approach for FBBR design.  相似文献   

6.
A cyclone reactor for microbial fermentation processes was developed with high oxygen transfer capabilities. Three geometrically similar cyclone reactors with 0.5?l, 2.5?l and 15?l liquid volume, respectively, were characterized with respect to oxygen mass transfer, mixing time and residence time distribution. Semi-empirically correlations for prediction of oxygen mass transfer and mixing times were identified for scale-up of cyclone reactors. A volumetric oxygen mass transfer coefficient k L a of 1.0?s?1 (available oxygen transfer rate with air: 29?kg?m?3?h?1) was achieved with the cyclone reactor at a volumetric power input of 40?kW?m?3 and an aeration gas flow rate of 0.2?s?1. Continuous methanol controlled production of formate dehydrogenase (FDH) with Candida boidinii in a 15?l cyclone reactor resulted in more than 100% improvement in dry cell mass concentration (64.5?g?l?1) and in about 100% improvement in FDH space-time yield (300?U?l?1?h?1) compared to steady state results of a continuous stirred tank reactor.  相似文献   

7.
The effects of dispersion and mass transfer resistance on the degree of conversion in an immobilized-enzyme reactor have been considered theoretically. It is assumed that the immobilized enzymes obey a Michaelis–Menten relationship and backmixing can be characterized by a dispersion model. For two extreme cases (perfect mixing and piston flow), approximate equations are obtained, which can be readily used to evaluate the effect of mass transfer on degree of conversion. Numerical solutions are obtained for other intermediate cases. Design charts are given which set practical limits of enzyme reactor design.  相似文献   

8.
三相逆流湍动床气液传质性能的研究   总被引:1,自引:0,他引:1  
由空气-水(清水/废水)-中空玻璃珠构成三相体系,在表观气速0·53~10mm·s-1、固含率为0~0·3、表观液速0~0·2mm·s-1的条件下,采用溶氧仪研究了三相逆流湍动床的气液传质性能,考察了操作参数和液体性质对液相容积传质系数kLa的影响。结果表明,在所试条件下,kLa为0·0456~1·414min-1。kLa随着表观气速和表观液速的增加而增加,随着固含率的增加先增加后减小,0·05~0·08为反应器传质的最优固含率条件。液体性质对kLa有重大影响,高浓度模拟废水和工业废水中的kLa比清水中的kLa分别减小39·0%和50·9%。研究结果可为后续逆流湍动床废水生物处理过程分析与模拟提供传质基础数据。  相似文献   

9.
The impact of mass transfer on productivity can become a crucial aspect in the fermentative production of bulk chemicals. For highly aerobic bioprocesses the oxygen transfer rate (OTR) and productivity are coupled. The achievable space time yields can often be correlated to the mass transfer performance of the respective bioreactor. The oxygen mass transfer capability of a jet aerated loop reactor is discussed in terms of the volumetric oxygen mass transfer coefficient kLa [h?1] and the energetic oxygen transfer efficiency E [kgO2 kW?1 h?1]. The jet aerated loop reactor (JLR) is compared to the frequently deployed aerated stirred tank reactor. In jet aerated reactors high local power densities in the mixing zone allow higher mass transfer rates, compared to aerated stirred tank reactors. When both reactors are operated at identical volumetric power input and aeration rates, local kLa values up to 1.5 times higher are possible with the JLR. High dispersion efficiencies in the JLR can be maintained even if the nozzle is supplied with pressurized gas. For increased oxygen demands (above 120 mmol L?1 h?1) improved energetic oxygen transfer efficiencies of up to 100 % were found for a JLR compared to an aerated stirred tank reactor operating with Rushton turbines.  相似文献   

10.
11.
Enzymatic oxidation of lactose to lactobionic acid (LBA) by a carbohydrate oxidase from Microdochium nivale was studied in a pilot-scale batch reactor of 600 L working volume using a rotary jet head (RJH) for mixing and mass transfer (Nordkvist et al., 2003, Chem Eng Sci 58:3877-3890). Both lactose and whey permeate were used as substrate, air was used as oxygen source, and catalase was added to eliminate the byproduct hydrogen peroxide. More than 98% conversion to LBA was achieved. Neither enzyme deactivation nor enzyme inhibition was observed under the experimental conditions. The dissolved oxygen tension (DOT) was constant throughout the tank for a given set of operating conditions, indicating that liquid mixing was sufficiently good to avoid oxygen gradients in the tank. However, at a given oxygen tension measured in the tank, the specific rate of reaction found in the RJH system was somewhat higher than previously obtained in a 1 L mechanically stirred tank reactor (Nordkvist et al., 2007, in this issue, pp. 694-707). This can be ascribed to a higher pressure in the recirculation loop which is part of the RJH system. Compared to mechanically stirred systems, high values of the volumetric mass transfer coefficient, k(L)a, were obtained when lactose was used as substrate, especially at low values of the specific power input and the superficial gas velocity. k(L)a was lower for experiments with whey permeate than with lactose due to addition of antifoam. The importance of mass transfer and of the saturation concentration of oxygen on the volumetric rate of reaction was demonstrated by simulations.  相似文献   

12.
This study describes the results of a hollow fibre membrane reactor with immobilized treated cells of Zymomonas mobilis which produced sorbitol and gluconic acid continuously from fructose and glucose respectively. A productivity of 10-20 g sorbitol · L-1 · h-1 and 10-20 gluconate · L-1 · h-1 (based on total bioreactor volume) from a feed of 100 g · L-1 each of glucose and fructose was possible at high dilution rates. Kinetic parameters describing the reaction rate of treated cells in batch reactors were used to analyse the performance of the hollow fibre membrane reactor employing significant convective mass transfer. No significant mass transfer limitation was apparent.  相似文献   

13.
An immobilized enzyme reactor system for converting poorly soluble substrate is proposed. In this stirred batch reactor, the solid substrate and immobilized enzyme suspensions are separated by a microporous filter. The advantage of separating the solid substrate from immobilized enzyme is that the fouling and breakage of the immobilized enzyme usually encountered in the stirred tank reactor can be prevented. Pressure swing can be applied to enhance the mass transfer between the two compartments. The hydrolytic reaction converting the poorly soluble substrate p-hydroxyphenylhydantoin (pHPH) into soluble N-carbamoyl-p-d-hydroxyphenylglycine (CpHPG) by immobilized d-hydantoinase is carried out in this reactor. The performance of this pressure-swing reactor is studied by simulation using a simple kinetic model. The pressure-swing operation increases the overall production rate significantly. The pressure swing also makes the reactor perform better for converting the solid substrate at higher concentration.  相似文献   

14.
The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid–liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation.  相似文献   

15.
Economic production of biodegradable plastics is a challenge particularly because of high substrate and energy cost inputs for its production. Research efforts are being directed towards innovations to minimize both of the above costs to economize polyhydroxybutyrate (PHB) production. A novel airlift reactor (ALR) with outer aeration and internal settling was utilized in this investigation. Although it featured no power consumption for agitation, it facilitated increased oxygen transfer rate and better cell retention than stirred tank reactor (STR), thereby resulting in enhanced PHB productivity. ALR with in?situ cell retention demonstrated a significant improvement in biomass concentration and biopolymer accumulation. The total PHB production rate, specific biomass, and product yield in the ALR were observed to be 0.84?g/h, 0.43?g/g, and 0.32?g/g, respectively. The studies revealed that the volumetric oxygen mass transfer rate and mixing time for ALR were 0.016?s(-1) and 3.73?s, respectively, at 2.0?vvm as compared with corresponding values of 0.005?s(-1) and 4.95?s, respectively, in STR. This demonstrated that ALR has better oxygen mass transfer and mixing efficiency than STR. Hence, ALR with cell retention would serve as a better bioreactor design for economic biopolymer production than STR, particularly due to its lower cost of operation and simplicity along with its enhanced oxygen and heat transfer rates.  相似文献   

16.
The scale up of the novel, pharmaceutically important pneumocandin (B(0)), from the filamentous fungus Glarea lozoyensis was successfully completed from pilot scale (0.07, 0.8, and 19 m(3)) to production scale (57 m(3)). This was accomplished, despite dissimilar reactor geometry, employing a combination of scale-up criteria, process sensitivity studies, and regime analysis using characteristic time constants for both oxygen mass transfer and bulk mixing. Dissolved oxygen tension, separated from the influence of agitation by gas blending at the 0.07 m(3)-scale, had a marked influence on the concentrations of pneumocandin analogs with different levels of hydroxylation, and these concentrations were used as an indicator of bulk mixing upon scale up. The profound impact of dissolved oxygen tension (DOT) (low and high levels) on analog formation dictated the use of constant DOT, at 80% air saturation, as a scale-up criterion. As a result k(L)a, Oxygen uptake rate (OUR) and hence the OTR were held constant, which were effectively conserved across the scales, while the use of other criterion such as P(g)/V(L), or mixing time were less effective. Production scale (57 m(3)) mixing times were found to be faster than those at 19 m(3) due to a difference in liquid height/tank diameter ratio (H(L)/D(T)). Regime analysis at 19 and 57 m(3) for bulk mixing (t(c)) and oxygen transfer (1/k(L)a) showed that oxygen transfer was the rate-limiting step for this highly shear thinning fermentation, providing additional support for the choice of scale-up criterion.  相似文献   

17.
Gas–liquid mass transfer was investigated in an up-flow cocurrent packed-bed biofilm reactor. In aerobic processes gas–liquid mass transfer can be considered as a key operational parameter as well as in reactor scale-up. The present paper investigates the influence of the liquid phase mixing in the determination of the volumetric gas–liquid mass transfer coefficient (kLa) coefficient. Residence time distribution (RTD) experiments were performed in the reactor to determine the flow pattern of the liquid phase and to model mathematically the liquid phase mixing. The mathematical model derived from RTD experiments was used to evaluate the influence of the liquid mixing on the experimental estimation of the (kLa) in this reactor type. The methods used to estimate the kLa coefficient were: (i) dynamic gassing-out, (ii) sulphite method, and (iii) in-process estimation through biological conversion obtained in the reactor. The use of standard chemical engineering correlations to determine the kLa in this type of bioreactors is assessed. Experimental and modelling results show how relevant can be to take into consideration the liquid phase mixing in the calculations of the most-used methods for the estimation of kLa coefficient. kLa coefficient was found to be strongly heterogeneous along the reactor vertical axis. The value of the kLa coefficient for the packed-bed section ranged 0.01–0.12 s−1. A preliminary correlation was established for up-flow cocurrent packed-bed biofilm reactors as a function of gas superficial velocity.  相似文献   

18.
A continuous supermacroporous monolithic chromatographic matrix has been characterized using a capillary model, experimental breakthrough curves, and pressure drop experiments. The model describes the convective flow and its dispersive mixing effects, mass transfer resistance, pore size distribution, and the adsorption behavior of the monolithic matrix. It is possible to determine an effective pore size distribution by fitting the capillary model to experimental breakthrough curves and pressure drop experiments. The model is able to describe the flow rate dependence of the experimental breakthrough curves. Mass transport resistance was due to: (i) dispersive mixing effects in the convective flow in the pores; and (ii) slow diffusion in the stagnant film covering the surface within each pore, under adsorption conditions. The monolithic matrix can be described by a very narrow pore size distribution, illustrating one of the advantages of the gel. A broader pore size distribution results in increased band broadening. This can be studied easily using the model developed in this investigation.  相似文献   

19.
A large bioreactor is heterogeneous with respect to concentration gradients of substrates fed to the reactor such as oxygen and growth limiting carbon source. Gradient formation will highly depend on the fluid dynamics and mass transfer capacity of the reactor, especially in the area in which the substrate is added. In this study, some production-scale (12 m3 bioreactor) conditions of a recombinant Escherichia coli process were imitated on a laboratory scale. From the large-scale cultivations, it was shown that locally high concentration of the limiting substrate fed to the process, in this case glucose, existed at the level of the feedpoint. The large-scale process was scaled down from: (i) mixing time experiments performed in the large-scale bioreactor in order to identify and describe the oscillating environment and (ii) identification of two distinct glucose concentration zones in the reactor. An important parameter obtained from mixing time experiments was the residence time in the feed zone of about 10 seconds. The size of the feed zone was estimated to 10%. Based on these observations the scale-down reactor with two compartments was designed. It was composed of one stirred tank reactor and an aerated plug flow reactor, in which the effect of oscillating glucose concentration on biomass yield and acetate formation was studied. Results from these experiments indicated that the lower biomass yield and higher acetate formation obtained on a large scale compared to homogeneous small-scale cultivations were not directly caused by the cell response to the glucose oscillation. This was concluded since no acetate was accumulated during scale-down experiments. An explanation for the differences in results between the two reactor scales may be a secondary effect of high glucose concentration resulting in an increased glucose metabolism causing an oxygen consumption rate locally exceeding the transfer rate. The results from pulse response experiments and glucose concentration measurements, at different locations in the reactor, showed a great consistency for the two feeding/pulse positions used in the large-scale bioreactor. Furthermore, measured periodicity from mixing data agrees well with expected circulation times for each impeller volume. Conclusions are drawn concerning the design of the scale-down reactor.  相似文献   

20.
Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the effectiveness factor is based on the solution of the governing equations for solute transport in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized in the matrix). The lumen solution accounts for both axial diffusion and radial convective flow, while the matrix solution is based on Robin-type boundary conditions. The effectiveness factor is shown to be a function of the Thiele modulus, the partition coefficient, the Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele moduli are defined in the effectiveness factor graphs. These correspond with reaction rate limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial convective flows were shown to only improve the effectiveness factor in the region of internal diffusion limitation. The assumption of first order kinetics is shown to be applicable only in the Thiele modulus regions of internal and external mass transfer limitation. An iteration scheme is also presented for estimating the effectiveness factor when the solute fractional conversion is known. The model is validated with experimental data from a membrane gradostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin and manganese peroxidases. The developed model and experimental data allow for the determination of the Thiele modulus at which the effectiveness factor and fractional conversion are optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号