首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Proper activation of the Ras/MAPK pathway is broadly required during development, and in many cases, signal transduction downstream of the receptor is linear. Thus, different mechanisms exist to properly regulate the large number of specific developmental outputs that are required by the activation of this pathway. Previously, we have reported a regulated cytoplasmic sequestration of phosphorylated MAPK (pMAPK) in developing Drosophila compound eyes and wings “called MAPK Cytoplasmic Hold”. In the developing wing, we have shown that cytoplasmic hold promotes the differentiation of wing vein tissue, while pMAPK nuclear translocation regulates growth and division. We had also suggested that the Ras pathway signals for inducing cell growth and cell division split upstream of the nuclear translocation of MAPK itself. Here, we further refine the role of MAPK in Drosophila. We report evidence that suggests, for the first time, that the phosphorylation of MAPK is itself another step in the regulation of cell growth and division in both Drosophila wing and eye cells. We show that inhibition of MAPK phosphorylation, or pMAPK nuclear translocation, is sufficient to block cell growth, but not cell division. These data suggest that non-phosphorylated MAPK is sufficient to induce cell division, but not cell growth, once inside the nucleus of the cell.Key words: Drosophila, MAPK, growth, division, proliferation, phosphorylation  相似文献   

2.
3.
Mammalian STE20-like kinase (MST) is a member of the yeast STE20-related kinase family and proteolytically activated by caspase during apoptosis. However, its other cellular functions are not known, including its activation mechanism, substrate(s), and subcellular localization. In this report, using anti-MST monoclonal antibodies, we clearly show that endogenous MST is localized in cytoplasm in a leptomycin B-dependent manner. Analyses with serial deletions and point mutations show that MST has two functional nuclear export signals and, unexpectedly, another localization motif for nuclear import. When cells are treated with leptomycin, monomeric MST is accumulated more rapidly in the nucleus than dimeric MST, indicating that dimerization contributes to the cytoplasmic retention of MST. Okadaic acid, an inhibitor of phosphatase 2A, induces activation of MST and translocation into the nucleus. Using phosphopeptide-specific antibody, we directly show that okadaic acid induces phosphorylation in the activation loop of MST, and, once phosphorylated, MST is rapidly translocated to the nucleus. However, kinase-deficient MST does not enter the nucleus, indicating that phosphorylation and activation is required for okadaic acid-induced nuclear translocation. In apoptotic cells, the activation of MST does not require phosphorylation in the activation loop and occurs through the release of C-terminal regulatory domain by caspase-dependent cleavage. Kinase-deficient MST functions dominant-negatively and represses okadaic acid-induced morphological change indicating that MST plays a role in okadaic acid-induced cellular shrinkage. Our identification of cytoplasmic and nuclear localization motifs and phosphorylation-dependent translocation of MST suggests that regulation of localization is important to the biological function of MST, including its effects on cellular morphology.  相似文献   

4.
5.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus; in response to activating stimuli, MAPKs translocate into the nucleus. Mammalian MEK MAPK kinases (MAPKKs) have in their N termini an MAPK-docking site and a nuclear export signal (NES) sequence, which are known to play critical roles in maintaining ERK MAPKs in the cytoplasm of unstimulated cells. Herein, we show that the Wis1 MAPKK of the stress-activated Spc1 MAPK cascade in fission yeast also has a MAPK-docking site and an NES sequence in its N-terminal domain. Unexpectedly, an inactivating mutation to the NES of chromosomal wis1(+) does not affect the subcellular localization of Spc1 MAPK, whereas this NES mutation disturbs the cytoplasmic localization of Wis1. However, when Wis1 is targeted to the nucleus by fusing to a nuclear localization signal sequence, stress-induced nuclear translocation of Spc1 is abrogated, indicating that cytoplasmic Wis1 is required for nuclear transport of Spc1 upon stress. Moreover, we have observed that a fraction of Wis1 translocates into the nucleus in response to stress. These results suggest that cytoplasmic localization of Wis1 MAPKK by its NES is important for stress signaling to the nucleus.  相似文献   

6.
M Fukuda  Y Gotoh    E Nishida 《The EMBO journal》1997,16(8):1901-1908
The mitogen-activated protein kinase (MAPK) cascade consisting of MAPK and its direct activator, MAPK kinase (MAPKK), is essential for signaling of various extracellular stimuli to the nucleus. Upon stimulation, MAPK is translocated to the nucleus, whereas MAPKK stays in the cytoplasm. It has been shown recently that the cytoplasmic localization of MAPKK is determined by its nuclear export signal (NES) in the near N-terminal region (residues 33-44). However, the mechanism determining the subcellular distribution of MAPK has been poorly understood. Here, we show that introduction of v-Ras, active STE11 or constitutively active MAPKK can induce nuclear translocation of MAPK in mammalian cultured cells. Furthermore, we show evidence suggesting that MAPK is localized to the cytoplasm through its specific association with MAPKK and that nuclear accumulation of MAPK is accompanied by dissociation of a complex between MAPK and MAPKK following activation of the MAPK pathway. We have identified the MAPK-binding site of MAPKK as its N-terminal residues 1-32. Moreover, a peptide encompassing the MAPK-binding site and the NES sequence of MAPKK has been shown to be sufficient to retain MAPK to the cytoplasm. These findings reveal the molecular basis regulating subcellular distribution of MAPK, and identify a novel function of MAPKK as a cytoplasmic anchoring protein for MAPK.  相似文献   

7.
8.
PTOV1 is a mitogenic protein that shuttles between the nucleus and the cytoplasm in a cell cycle-dependent manner. It consists of two homologous domains arranged in tandem that constitute a new class of protein modules. We show here that PTOV1 interacts with the lipid raft protein flotillin-1, with which it copurifies in detergent-insoluble floating fractions. Flotillin-1 colocalized with PTOV1 not only at the plasma membrane but, unexpectedly, also in the nucleus, as demonstrated by immunocytochemistry and subcellular fractionation of endogenous and exogenous flotillin-1. Flotillin-1 entered the nucleus concomitant with PTOV1, shortly before the initiation of the S phase. Protein levels of PTOV1 and flotillin-1 oscillated during the cell cycle, with a peak in S. Depletion of PTOV1 significantly inhibited nuclear localization of flotillin-1, whereas depletion of flotillin-1 did not affect nuclear localization of PTOV1. Depletion of either protein markedly inhibited cell proliferation under basal conditions. Overexpression of PTOV1 or flotillin-1 strongly induced proliferation, which required their localization to the nucleus, and was dependent on the reciprocal protein. These observations suggest that PTOV1 assists flotillin-1 in its translocation to the nucleus and that both proteins are required for cell proliferation.  相似文献   

9.
10.
11.
Mitogen-activated protein kinases/extracellular signal regulated kinases (MAPKs/ERKs) are typically thought to be soluble cytoplasmic enzymes that translocate to the nucleus subsequent to their phosphorylation by their activating kinases or mitogen-activated protein/extracellular signal regulated kinase kinase. We report here the first example of nuclear translocation of a MAPK that occurs via temporally regulated exit from a membranous organelle. Confocal microscopy examining the subcellular localization of ERK3 in several cell lines indicated that this enzyme was targeted to the Golgi/endoplasmic reticulum Golgi intermediate compartment. Deletion analysis of green fluorescent protein (GFP)-ERK3 uncovered a nuclear form that was carboxy-terminally truncated and established a Golgi targeting motif at the carboxy terminus. Immunoblot analysis of cells treated with the proteasome inhibitor MG132 further revealed two cleavage products, suggesting that in vivo, carboxy-terminal cleavage of the full-length protein controls its subcellular localization. In support of this hypothesis, we found that deletion of a small region rich in acidic residues within the carboxy terminus eliminated both the cleavage and nuclear translocation of GFP-ERK3. Finally, cell cycle synchronization studies revealed that the subcellular localization of ERK3 is temporally regulated. These data suggest a novel mechanism for the localization of an MAPK family member, ERK3, in which cell cycle-regulated, site-specific proteolysis generates the nuclear form of the protein.  相似文献   

12.
13.
Control of MAP kinase signaling to the nucleus   总被引:11,自引:0,他引:11  
Kondoh K  Torii S  Nishida E 《Chromosoma》2005,114(2):86-91
MAP kinase (MAPK) signaling is among central signaling pathways that regulate cell proliferation, cell differentiation and apoptosis. As MAPK should transmit extracellular signals to proper regions or compartments in cells, controlling subcellular localization of MAPK is important for regulating fidelity and specificity of MAPK signaling. The ERK1/2-type of MAPK is the best characterized member of the MAPK family. In response to extracellular stimulus, ERK1/2 translocates from the cytoplasm to the nucleus by passing through the nuclear pore by several independent mechanisms. Sef (similar expression to fgf genes), a transmembrane protein, has been shown to be a regulator of subcellular distribution of ERK1/2. Sef binds to activated MEK1/2, the specific activator of ERK1/2, and tethers the activated MEK1/2/activated ERK1/2 complex to the Golgi apparatus and the plasma membrane. Thus, Sef blocks ERK1/2 signaling to the nucleus and allows signaling to the cytoplasm. Here we review recent findings on spatial regulation of MAPK, especially on nucleocytoplasmic trafficking of ERK1/2.  相似文献   

14.
15.
Transport of the viral genome into the nucleus required phosphorylation of components in the preintegration complex by virion-associated host cellular kinases. In this study, we showed that ERK-2/MAPK is associated with simian immunodeficiency virus (SIV) virions and regulated the nuclear transport of Vpx and virus replication in non-proliferating target cells by phosphorylating Vpx. Suppression of the virion-associated ERK-2 activity by MAPK pathway inhibitors impaired both Vpx nuclear import and viral infectivity without affecting virus particle maturation and release. In addition, mutation analysis indicated that the inactivation of Vpx phosphorylation precluded nuclear import and reduced virus replication in macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral preintegration complex nuclear import are present. In this study, we also showed that co-localization of Vpx with Gag precursor in the cytoplasm is a prerequisite for Vpx incorporation into virus particles. Substitution of hydrophobic Leu-74 and Ile-75 with serines in the helical domain abrogated Vpx nuclear import, and its incorporation into virus particles, despite its localization in the cytoplasm, suggested that the structural integrity of helical domains is critical for Vpx functions. Taken together, these studies demonstrated that the host cell MAPK signal transduction pathway regulated an early step in SIV infection.  相似文献   

16.
Human T-cell leukemia virus type 1 Tax is a predominantly nuclear viral oncoprotein that colocalizes with cellular proteins in nuclear foci known as Tax speckled structures (TSS). Tax is also diffusely distributed throughout the cytoplasm, where it interacts with and affects the functions of cytoplasmic cellular proteins. Mechanisms that regulate the distribution of Tax between the cytoplasm and nucleus remain to be identified. Since Tax has been shown to promote genome instability by perturbing cell cycle progression and DNA repair mechanisms following DNA damage, we examined the effect of genotoxic stress on the subcellular distribution and interacting partners of Tax. Tax localization was altered in response to various forms of cellular stress, resulting in an increase in cytoplasmic Tax and a decrease in Tax speckled structures. Concomitantly, colocalization of Tax with sc35 (a TSS protein) decreased following stress. Tax translocation required the CRM1 nuclear export pathway, and a transient interaction between Tax and CRM1 was observed following stress. These results suggest that the subcellular distribution of Tax and the interactions between Tax and cellular proteins respond dynamically to cellular stress. Changes in Tax distribution and interacting partners are likely to affect cellular processes that regulate cellular transformation.  相似文献   

17.
Translocation to cellular membranes is one of the hallmarks of PKC activation, occurring as a result of the generation of lipid secondary messengers in target membrane compartments. The activation-induced translocation of PKCs and binding to membranes is largely directed by their regulatory domains. We have previously reported that PKCη, a member of the novel subfamily and an epithelial specific isoform, is localized at the cytoplasm and ER/Golgi and is translocated to the plasma membrane and the nuclear envelope upon short-term activation by PMA. Here we show that PKCη is shuttling between the cytoplasm and the nucleus and that upon etoposide induced DNA damage is tethered at the nuclear envelope. Although PKCη expression and its phosphorylation on the hydrophobic motif (Ser675) are increased by etoposide, this phosphorylation is not required for its accumulation at the nuclear envelope. Moreover, we demonstrate that the C1b domain is sufficient for translocation to the nuclear envelope. We further show that, similar to full-length PKCη, the C1b domain could also confer protection against etoposide-induced cell death. Our studies demonstrate translocation of PKCη to the nuclear envelope, and suggest that its spatial regulation could be important for its cellular functions including effects on cell death.  相似文献   

18.
19.
20.
Angiogenin activates Erk1/2 in human umbilical vein endothelial cells   总被引:4,自引:0,他引:4  
Angiogenin is a potent angiogenic factor that binds to endothelial cells and is endocytosed and rapidly translocated to the nucleus where it is concentrated in the nucleolus and binds to DNA. Angiogenin also activates cell-associated proteases, induces cell invasion and migration, stimulates cell proliferation, and organizes cultured cells to form tubular structures. The intracellular signaling pathways that mediate these various cellular responses are not well understood. Here we report that angiogenin induces transient phosphorylation of extracellular signal-related kinase1/2 (Erk1/2) in cultured human umbilical vein endothelial cells. Angiogenin does not affect the phosphorylation status of stress-associated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and p38 mitogen-activated protein (MAP) kinases. PD98059--a specific inhibitor of MAP or Erk kinase 1 (MEK 1), the upstream kinase that phosphorylates Erk1/2--abolishes angiogenin-induced Erk phosphorylation and cell proliferation without affecting nuclear translocation of angiogenin. In contrast, neomycin, a known inhibitor of nuclear translocation and cell proliferation, does not interfere with angiogenin-induced Erk1/2 phosphorylation. These data indicate that both intracellular signaling pathways and direct nuclear functions of angiogenin are required for angiogenin-induced cell proliferation and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号