首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic replicon of the endogenous Methylomonas clara plasmid pBE-2 and its derivatives was defined to a region of 2.7 kb by in vivo deletions and conjugative transfer experiments using Escherichia coli-M. clara hybrid plasmids. Origin activity was found to be confined to a maximal length of 1.3 kb. The origin consists of two fragments which can be separated more than 4 kb by the integration of foreign DNA fragments without loss of function. A fragment having a maximum size of 2.1 kb supports in trans replication initiation at the origin. In addition, two incompatibility determinants were revealed, one localized in the origin fragment and the other outside the origin. Incompatibility between two basic replicons of the natural M. clara plasmids can be overcome by the integration of one of them in the compatible IncP plasmid R68-Kms. No homology was found between the plasmid basic replicon and the chromosomal DNA of M. clara.  相似文献   

2.
The Escherichia coli plasmid pBR322 sequence (4363 bp) was integrated at the met, pro, or leuB locus of the Bacillus subtilis chromosome without duplication of the flanking chromosomal regions. The integrated pBR322 was stably maintained as part of the chromosome regardless of its orientation or location. It was found that a DNA segment as large as 17 kb cloned in pBR322 can be readily transferred to the B. subtilis chromosome by transformation. It was demonstrated that a second pBR322 sequence could be effectively introduced at different regions of the chromosome by sequential transformation using chromosomal DNA isolated from a strain that had already acquired a pBR322 sequence at a different locus. Similarly, a third pBR322 sequence could be introduced. By this method, two or three pBR322 sequences can be incorporated at unlinked loci without affecting the overall structure of the B. subtilis genome.  相似文献   

3.
Summary AnEscherichia coli K-12 strain harbouring either the plasmid pBR322, or the recombinant plasmid pKTH1220, a 14 kb derivative of pBR322, or no plasmid was grown in a chemostat. The cultivations were continued for 300–400 bacterial generations.E. coli hosts harbouring pBR322 or no plasmid grew in a similar way, but the growth of the host containing the big recombinant plasmid was slower. The plasmid copy numbers increased up to 2–3 fold as the dilution rate was increased from 0 to ca. 1 h–1. After this point the increase in dilution rate seemed to induce a rapid decrease in the plasmid copy numbers. High copy numbers could be maintained using dilution rates resulting in good productivity of the cell mass.  相似文献   

4.
A plasmid, pGB112, has recently been developed to transfer DNA from Escherichia coli to Streptomyces spp via conjugation. This technique made use of (A) E. coli replicon, (B) ampicillin (amp) resistance gene for selection in E. coli and thiostrepton (tsr) resistance gene for selection in Streptomyces, (C) a fragment of SCP2* replicon, (D) a 2.6 kb fragment of tra-cassette which consists of pIJ101 transfer gene (tra) and two ermE promoters, (E) a 0.8 kb fragment of oriT of (IncP) RK2. The results showed that this plasmid was able to transfer plasmid DNA from E. coli to Streptomyces coelicolor via conjugation, and that it could also transfer DNA between Streptomyces strains. Since this plasmid has both pBR322 and SCP2* replicons, it may provide a novel and useful method for genetic operation in E. coli and Streptomyces.An erratum to this article can be found at  相似文献   

5.
Summary We describe mutants of Escherichia coli that decrease the plasmid copy number of pBR322 derivatives. One mutant was partially characterized genetically and its mutation, designated pcnB for plasmid copy number, was mapped to approximately 3 min on the E. coli chromosome. This locus is distinct from other genes whose products are known to affect plasmid replication or stable plasmid maintenance. The pcnB mutant strain should be useful for cloning genes into pBR322 that have aberrant or deleterious effects on the cell when present in high copy number.  相似文献   

6.
The stringent response causes inhibition of replication of plasmid pBR322 in amino acid-starved Escherichia coli cells whereas in relaxed mutants the replication of this plasmid proceeds for several hours. On the basis of density shift experiments and pulse-labelling experiments we showed that most of the pBR322 molecules begin replication during the relaxed response and the rate of plasmid DNA synthesis in unstarved and isoleucine-starved relA ] bacteria is similar. We found that the Rom function plays a key role in the stringent control of plasmid pBR322 replication, as insertional inactivation of the rom gene causes amplification of pBR322rom in both relA and relA + strains during amino acid starvation. Moreover, pUC19, which is a pBR322-derived plasmid lacking the rom gene, behaves like pBR322rom , whereas introduction of the rom gene into the pUC19 replicon drives it into the pBR322 mode of replication in amino acid-starved bacteria. A model for the regulation of pBR322 plasmid DNA replication by Rom protein in amino acid-starved Escherichia coli strains is proposed.  相似文献   

7.
Summary The 160 kb plasmid pAO1 from Arthrobacter oxidans (Brandsch and Decker 1984) was subcloned in Escherichia coli with the aid of the plasmid vectors pUR222 and pBR322. Screening of the recombinant clones for enzyme activity revealed that the flavoenzyme 6-hydroxy-d-nicotine oxidase (6-HDNO), one of the enzymes of the nicotine-degradative pathway in A. oxidans, is encoded on pAO1. Immunoprecipitation of 35S-methionine-labelled E. coli cells with 6-HDNO-specific antiserum and expression of recombinant plasmid DNA in E. coli maxicells revealed that 6-HDNO is made as a 52,000 dalton protein, approximately 4,500 daltons larger than 6-HDNO from A. oxidans. The 6-HDNO activity was constitutively expressed in E. coli cells, possibly from an A. oxidans promoter, as shown by subcloning of the 6-HDNO gene in pBR322, using the expression vector pKK223-3 and the promoter probe vector pCB192.  相似文献   

8.
Summary The cryptic plasmid pSG5 of Streptomyces ghanaensis 5/1B (DSM 2932) was characterized to have a molecular size of 12.7 kb and an approximate copy number of 20–50 per chromosome. A bifunctional derivative, designated pSW344E, consisting of pSG5 and an Escherichia coli vector plasmid was constructed. Following Tn5 mutagenesis in E. coli, the replication functions of the mutagenized pSW344E plasmids were analysed in S. lividans. A 2 kb DNA fragment of the pSG5 replicon was found to carry replication functions. Subcloning of pSG5 DNA into various replication probe vectors resulted in the identification of the pSG5 minimal replicon, identical to the above mentioned 2 kb DNA region. Several small bifunctional plasmids, able to replicate in E. coli as well as in Streptomyces, were generated during subcloning. Some of these plasmids were found to be useful shuttle vectors.  相似文献   

9.
The Escherichia coli plasmid pBR322 sequence (4363 bp) was integrated at the met, pro, or leuB locus of the Bacillus subtilis chromosome without duplication of the flanking chromosomal regions. The integrated pBR322 was stably maintained as part of the chromosome regardless of its orientation or location. It was found that a DNA segment as large as 17 kb cloned in pBR322 can be readily transferred to the B. subtilis chromosome by transformation. It was demonstrated that a second pBR322 sequence could be effectively introduced at different regions of the chromosome by sequential transformation using chromosomal DNA isolated from a strain that had already acquired a pBR322 sequence at a different locus. Similarly, a third pBR322 sequence could be introduced. By this method, two or three pBR322 sequences can be incorporated at unlinked loci without affecting the overall structure of the B. subtilis genome.  相似文献   

10.
Summary By using recombinant DNA techniques, we have constructed a chimeric plasmid, pSM7322 (10.8 kb), between the streptococcal erythromycin resistance vector plasmid pSM7 (6.4 kb) and the E. coli vector pBR322 (4.4 kb). As judged by the minimum inhibitory concentrations of erythromycin and lincomycin, pSM7-determined resistance to these antibiotics is expressed in E. coli.  相似文献   

11.
Recombinant plasmids bearing the Escherichia coli K-12 aspartase gene (aspA) and the plasmid partition locus (par) were introduced into a catabolite repression-resistant strain of E. coli B, AT202, constructed by mutational and transductional methods. Plasmid pNK101(pBR322-aspA-par) was stably maintained in cells of AT202 even after 30 cell generations, while pYT471(pBR322-aspA), which bore no par locus, was lost at high frequencies from the host cells. Strain AT202 harboring pNK101 produced 3-fold and 80-fold more aspartase than the wild-type E. coli B harboring pNK101 and the wild-type E. coli B strain, respectively. The maximum amount of aspA product (aspartase) was 40–45% of the total cellular protein.  相似文献   

12.
Summary In anEscherichia coli K-12 strain (trpA trpE tnaA) cultured in LB broth without selective pressure, a pBR322 derivative containing the gene for tryptophan synthase (pBR322-trpBA) was found to be unstable. After 70 cell-number doublings, only 50% of the host cells retained the gene for ampicillin resistance (Apr). Insertion of the mini-F fragment of F factor DNA into this plasmid could effectively reduce the plasmid loss. Partial derepression of the tryptophan promotor-operator by 3-indopleacrylic acid further decreased the stability of the pBR322-trpBA but not that of the mini-F inserted plasmid (pBR322F-trpBA) The vector pBR322F-trpBA could be maintained at high copy number in the culture after 100 generations of growth; the culture was able to overproduce tryptophan synthase in the presence of 3-indoleacrylic acid.l-Tryptophan was produced from indole andl-serine using andE. coli host transformed with.pBR322F-trpBA DNA. After 8 h of incubation, the expression level was approximately 180 g/l.  相似文献   

13.
Summary A DNA fragment from the methanogenic archaebacterium Methanococcus voltae, when cloned into the PstI site of the plasmid vector pBR322, complements the Escherichia coli argG mutation strongly or weakly depending on its orientation. Faster-growing variants derived from a strain containing the poorly expressed fragment were found to harbor plasmids which had undergone genetic rearrangements. Some of the plasmids were shown to have acquired an insertion element (IS2 or IS5), derived from the E. coli chromosome, close to the region essential for complementing activity. Other plasmids exhibited no homology with E. coli chromosomal DNA. These were found to represent multimeric forms of the parental plasmid in which 2–3 kb of DNA between the tet promoter and the argG-complementing region had been deleted. Growth rates of the variant strains in the absence of arginine varied significantly, suggesting differences in efficiency of activation of the cloned DNA.  相似文献   

14.
In an Escherichia coli K-12 strain (trpA trpE tnd) cultured in LB broth without selective pressure, a pBR322 derivative bearing the E. coli tryptophan Operon (pBR322-trp) was rapidly lost: after 27 cell-number doublings, only 7% cells retained both tryptophan prototrophy (Trp+) and ampicillin resistance (Apr), and 17% were Apr but Trp?. Insertion of the mini-F DNA from F factor into this plasmid effectively suppressed both the plasmid loss and the discoordinate loss of Trp+: the percentage of Trp? cells per cell-number doubling was decreased more than 100-fold. Partial derepression of the trp operon due to 3-indole acrylic acid further decreased the stability of the pBR322-trp but not that of the mini-F-inserted pBR322-trp.  相似文献   

15.
Summary Small plasmids were isolated from type strains ofClostridium butyricum. Strain NCIB 7423 carries one plasmid (pCBU1) of 6.4 kb, whereas strain NCTC 7423 carries two unrelated plasmids of 6.3 kb (pCBU2) and 8.4 kb (pCBU3). Cleavage sites for 18 restriction endonucleases have been mapped on these plasmids and detailed physical maps are presented. For the purpose of developing vector plasmids for gene cloning in saccharolytic clostridia these crypticC. butyricum plasmids were joined to a selectable marker that will likely be expressed in clostridia. This was achieved by cloning the clostridial plasmids into theE. coli vector pBR322 carrying the chloramphenicol acetyltransferase (CAT) gene from theStaphylococcus aureus plasmid pC194. The recombinant plasmids were tested for their ability to confer chloramphenicol resistance toBacillus subtilis. Hybrid plasmids (pHL105, pHL1051) derived from pCBU2 were identified, which are capable of replication and expression of theS. aureus drug resistance marker in bothE. coli andB. subtilis. No structural instability was detected upon retransformation of pHL105 fromB. subtilis intoE. coli. The recombinant plasmids might thus be useful as shuttle vectors for the gene transfer betweenE. coli and a wide range of bacilli and clostridia.  相似文献   

16.
Summary A plant gene transfer system was developed from the Agrobacterium rhizogenes pRi15834 TL-DNA region. Intermediate integration vectors constructed from ColE1-derived plasmids served as cloning vectors in Escherichia coli and formed cointegrates into the TL-DNA after transfer to A. rhizogenes. An A. rhizogenes strain with pBR322 plasmid sequences replacing part of the TL-DNA was also constructed. Plasmids unable to replicate in Agrobacterium can integrate into this TL-DNA by homologous recombination through pBR322 sequences. No loss of pathogenicity was observed with the strains formed after integration of intermediate vectors or strains carrying pBR322 in the TL-DNA segment. Up to 15 kb of DNA have been transferred to plant cells with these systems. The T-DNA from a binary vector was cotransformed into hairy roots which developed after transfer of the wild-type pRi T-DNA. Tested on Lotus corniculatus the TL-derived vector system transformed 90% of the developed roots and the T-DNA from the binary vector was cotransformed into 60% of the roots. Minimum copy numbers of one to five were found. Both constitutive and organ-specific plant genes were faithfully expressed after transfer to the legume L. corniculatus.  相似文献   

17.
Summary The structural gene of streptococcal pyrogenic exotoxin type C (SPE C) was cloned from the chromosome of Streptococcus pyogenes strain T18P into Escherichia coli using pBR328 as the vector plasmid. Subcloning enabled the localization of the gene (speC) to a 1.7 kb fragment. Partially purified E. coli-derived SPE C and purified streptococcal-derived SPE C, were shown to have the same molecular weight (23 800) and biological activities. A DNA probe, prepared from cloned speC, cross-hybridized with the structural genes of SPE A and SPE B indicating relatedness at the nucleotide level. The speC-derived probe also hybridized to a fragment of CS112 bacteriophage DNA containing the phage attachment site.  相似文献   

18.
Summary A lysine decarboxylase (LDC) gene from Hafnia alvei was cloned in the Escherichia coli strain HB101. A gene bank consisting of 2,000 clones, carrying recombinant plasmids with large DNA fragments of H. alvei integrated in the BamH1 site of pBR322, was screened for LDC activity by a colony filter radioimmunoassay. The gene bank yielded clone 462 expressing high LDC activity with the presence of a plasmid carrying a 7.5 kb insert of H. alvei. Two LDC-positive subclones derived from 462 with inserts of 2.9 and 3.3 kb were sequenced by the shotgun method. An open reading frame for a 83 K protein with 739 amino acids was determined as the coding region for the LDC. The identification of this reading frame as the true reading frame of the H. alvei LDC gene and its similarities with LDC of E. coli are described. The use of the cloned gene for the transformation of plant cells is discussed.  相似文献   

19.
Two genes of Pseudomonas putida (IFO 12996) which code for enzymes participating in amino acid metabolism, were cloned in Escherichia coli C600 using pBR322 as a vector. pST7549 is a 7.9 kb hybrid plasmid DNA which is composed of four SalI fragments (0.3, 1.4, 1.9 and 4.3 kb), and codes for β-isopropylmalate dehydrogenase (EC 1.1.1.85) in l-leucine biosynthesis. The enzyme activity in the crude extract from E. coli C600 bearing pST7549 was 80 ~ 90% lower than that of E. coli K12 or P. putida. When the foreign SalI fragments derived from P. putida were subcloned, a 1.9 kb SalI fragment was found to encode β-isopropylmalate dehydrogenase and it did not contain the promoter of P. putida DNA. Plasmid pST6961 has a 1.8 kb insert derived from the P. putida DNA in the SalI site of pBR322. E. coli cells carrying this recombinant plasmid show no leucine racemase activity and no d-leucine transaminase activity, but five-times higher d-leucine oxidation activity than the host strain, E. coli. Enzymological studies have suggested that plasmid pST6961 codes for d-amino acid dehydrogenase, a key enzyme in d-amino acid metabolism.  相似文献   

20.
Summary When plasmid pC194-1 is ligated to pBR322 to generate plasmid pHV15-1, deletions occur with high frequency within the joined pBR322 DNA. Generation of deletions is recE4 independent, and occurs in B. subtilis with a 1,000-fold higher frequency than in Escherichia coli. In the hybrid plasmid pVH15-1, deletion end-points are not at random, but at defined locations within pBR322. We propose that the base alteration, characterizing pC194-1, has stabilized within the plasmid a stem/loop structure, which acts as a deletion generator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号