首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The functions of nonpregnant woman neutrophils in the presence of chorionic gonadotropin (CG) have been studied, as well as possible mechanisms of intracellular hormone signaling. Expression of adhesion molecule CD18 and phagocyte activity of the cells are shown to be inhibited by a high dose of CG (100 IU/ml). Oxygen metabolite production by activated neutrophils decreases almost in a half in the presence of hormone, irrespective of the dose. Synthesis of nitric oxide, an oxidant and effective regulator molecule, is also suppressed by CG. Neutrophil incubation with hormone induces a dose-dependent modulation of intracellular cAMP level. The effect of CG is most strongly expressed for a low hormone dose (10 IU/ml), implying the presence of high affinity hormone-binding structures on the cell membrane. Judging from the correlation of data obtained, the functional effects of CG cannot be attributed to the regulation of adenylatcyclase activity and suggests that this is not the major mechanism of hormone signal transduction. Neutrophil sensitivity to suppressive CG effects is one of the ways of regulating nonspecific defence reactions in different physiological and/or pathological states connected with the presence of this hormone in the organism.  相似文献   

4.
Physiological activation of the hypothalamo-neurohypophyseal system (HNS) by dehydration results is a massive release of vasopressin (VP) from the posterior pituitary. This is accompanied by a functional remodeling of the HNS. In this study we used cDNA arrays in an attempt to identify genes that exhibit differential expression in the hypothalamus following dehydration. Our study revealed nine candidate genes, including interleukin-6 (IL-6) as a putative novel secretory product of HNS worthy of further analysis. In situ hybridization and immunocytochemistry confirmed that IL-6 is robustly expressed in the supraoptic (SON) and the paraventricular (PVN) nuclei of the hypothalamus. By double staining immunofluorescence we showed that IL-6 is largely co-localized with VP in the SON and PVN. In situ hybridization, immunocytochemistry, and Western blotting all revealed IL-6 up-regulation in the SON and PVN following dehydration, thus validating the array data. The same dehydration stimulus resulted in an increase in IL-6 immunoreactivity in the axons of the internal zone of the median eminence and a marked reduction in IL-6-like material in the posterior pituitary gland. We thus suggest that IL-6 takes the same secretory pathway as VP and is secreted from the posterior pituitary following a physiological stimulus.  相似文献   

5.
Appropriate thyroid gland function and thyroid hormone activity are considered crucial to sustain the productive performance in domestic animals (growth, milk or hair fibre production). Changes of blood thyroid hormone concentrations are an indirect measure of the changes in thyroid gland activity and circulating thyroid hormones can be considered as indicators of the metabolic and nutritional status of the animals. Thyroid hormones play a pivotal role in the mechanisms permitting the animals to live and breed in the surrounding environment. Variations in hormone bioactivity allow the animals to adapt their metabolic balance to different environmental conditions, changes in nutrient requirements and availability, and to homeorhetic changes during different physiological stages. This is particularly important in the free-ranging and grazing animals, such as traditionally reared small ruminants, whose main physiological functions (feed intake, reproduction, hair growth) are markedly seasonal. Many investigations dealt with the involvement of thyroid hormones in the expression of endogenous seasonal rhythms, such as reproduction and hair growth cycles in fibre-producing (wool, mohair, cashmere) sheep and goats. Important knowledge about the pattern of thyroid hormone metabolism and their role in ontogenetic development has been obtained from studies in the ovine foetus and in the newborn. Many endogenous (breed, age, gender, physiological state) and environmental factors (climate, season, with a primary role of nutrition) are able to affect thyroid activity and hormone concentrations in blood, acting at the level of hypothalamus, pituitary and/or thyroid gland, as well as on peripheral monodeiodination. Knowledge on such topics mirror physiological changes and possibly allows the monitoring and manipulation of thyroid physiology, in order to improve animal health, welfare and production.  相似文献   

6.
In many situations, organisms respond to stimuli by altering the activity of large numbers of genes. Among these, certain ones are likely to control the phenotype while others play a secondary role or are passively altered without directly affecting the phenotype. Identifying the controlling genes has proven difficult. However, in a few instances, it has been possible to reverse the phenotype by physiological or biochemical means without altering the genetics of the organism. During this functional reversion, only a few genes may respond, thus identifying those likely to be controlling the phenotype. Floral abortion during a water shortage in maize is an example because the response is inherently multigenic, and the phenotype can be reversed by physiological/biochemical means. A recent analysis used this reversal to reveal that only a few genes are likely to control the abortion phenotype. In maize, these genes coded for a cell wall invertase (Incw2), a soluble invertase (Ivr2), a ribosome-inactivating protein (RIP2), and phospholipase D (PLD1). The invertases appeared to control the normal sugar uptake by the ovaries. Their down-regulation depleted ovary sugar pools and resulted in an up-regulation of the genes for ribosome-inactivating protein and for phospholipase. The latter changes appeared to initiate senescence that degraded cell membranes, thus causing irreversible abortion. With these findings, these genes have become targets for preventing abortion. This approach might have value in other contexts with some additional methods.  相似文献   

7.
The problems on the place of hormones secreted by "classical" endocrine glands, on their relationship with other compounds that possess physiological activity, criteria that determine the definition "hormone" are considered in this article. The conception about the levels of the humoral regulatory systems that are organized and formed during phylogenesis and ontogenesis and provide a consecutive increase in their complexity and mobility of adaptation to changes of environment and internal conditions are substantiated on the basis of numerous data. The metabolites that are products of nonspecific activity of any cell of the multicellular organism form the first and simplest level of humoral regulatory organization. The next (second) level of humoral organization is also formed by chemically simple substances. However, these substances are specialized products of the secretory activity of cells and exert potent influence on the physiological processes. Neuroamines and regulatory peptides are applied to these agents, in the first place. They arise simultaneously and jointly at the first stage of ontogenesis. The distinctive characters of the third level of the humoral regulation are increased and complication of the regulatory activity conditioned by cooperative influences of humoral agents produced by single secretory elements situated outside the classical endocrine glands. The chemically and originally different substances causing predominantly local effects are attributed to these physiologically active substances. Their participation in general adaptive reactions as well as inclusion of classical hormones into hierarchy of humoral regulation signify the formation of the forth regulatory level that provides realization of general homeostatic reactions peculiar to the whole organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).  相似文献   

9.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

10.
11.
Landmark discoveries in intracellular transport and secretion   总被引:1,自引:1,他引:0  
Cellular protein transport and secretion is fundamental to the very existence of an organism, regulating important physiological functions such as reproduction, digestion, energy production, growth, neurotransmission, hormone release, water and ion transport, etc., all required for the survival and maintenance of homeostasis within an organism. Molecular understanding of transport and secretion of intracellular product has therefore been of paramount importance and aggressively investigated for over six decades. Only in the last 20 years, the general molecular mechanism of the process has come to light, following discovery of key proteins involved in ER-Golgi transport, and discovery of the porosome the universal secretion machinery in cells.  相似文献   

12.
13.
Histological changes induced in the HNS of the spotted owlet, Athene brama Temminck, by injection of 1 ml 5 or 10% formalin are described. No difference could be detected in the response of the HNS to 5 or 10% formalin administration. In the HNS of birds killed within 5 min of formalin administration, there was only partial depletion of NSM from the neurons, the tract and the NL; the quantity of NSM in the AME remained more or less unchanged. In animals killed 10-90 min after formalin injection, the depletion of NSM from the neurons, the tract and the NL was more complete. The neurons of the preoptic division of the SON exhibited the maximum response; these neurons were also moderately hypertrophied. The NL also was hypertrophied in some animals; the NSM in the AME registered only a partial loss. The interval between formalin administration and killing did not influence the degree of changes in the HNS. The depletion of NSM was no greater at 90 min following formalin injection than at 10 min. Since it is well established that formalin stress causes augmented secretion of ADH and that there is a close functional relationship existing between ADH and NSM, the depletion of NSM noticed in the HNS of the spotted owlet following formalin administration is interpreted as indicating augmented secretion of ADH. Hence it seems that the response of the HNS of birds to formalin stress are comparable to those of the HNS of mammals. The results thus provide histological evidence in favour of the concept that stressful stimuli cause increased secretion of ADH.  相似文献   

14.
Pheromone production and/or release by beetles is coordinated with a variety of behavioral, physiological, and environmental factors. To data, two basic mechanisms for the regulation of pheromone biosynthesis in beetles have been proposed. Pheromone biosynthesis may simply be dependent on the availability of biosynthetic precursors. Alternatively, certain stimuli or events may trigger pheromone biosynthesis via juvenile hormone (JH) action. JH may either act directly at the site of pheromone biosynthesis to enhance pheromone production or may act indirectly, through a brain hormone (which might be related to the pheromone biosynthesis activating neuropeptide) or through effects on antennal sensory response. Knowledge of the regulation of the initiation and termination of pheromone biosynthesis is reviewed. Mechanisms by which pheromone stereochemistry is controlled are also discussed. This is an important aspect of pheromone production in Coleoptera, since slight changes in the stereochemistry can completely alter the activity of the molecule. © 1994 Wiley-Liss, Inc.  相似文献   

15.
16.
17.
18.
19.
The adult hypothalamo-neurohypophysial system (HNS) undergoes activity-dependent morphological plasticity which modifies astrocytic coverage of its oxytocinergic neurons and their synaptic inputs. Thus, during physiological conditions that enhance central and peripheral release of oxytocin (OT), adjacent somata and dendrites of OT neurons become extensively juxtaposed, without intervening astrocytic processes and receive an increased number of synapses. The morphological changes occur within a few hours and are reversible with termination of stimulation. The reduced astrocytic coverage has direct functional consequences since it modifies extracellular ionic homeostasis, synaptic transmission, and the size and geometry of the extracellular space. It also contributes indirectly to neuronal function by permitting formation of synapses on neuronal surfaces freed of astrocytic processes. Overall, such remodeling is expected to potentiate activated neuronal firing, especially in clusters of tightly packed neurons, an anatomical arrangement characterizing OT neurons. This plasticity connotes dynamic cell interactions that must bring into play cell surface and extracellular matrix adhesive proteins like those intervening in developing neuronal systems undergoing neuronal-glial and synaptogenic transformations. It is worth noting, therefore, that adult HNS neurons and glia continue to express such molecules, including polysialic acid (PSA)-enriched neural cell adhesion molecule (PSA-NCAM) and the glycoprotein, tenascin-C. PSA is a large, complex sugar on the extracellular domain of NCAM considered a negative regulator of adhesion; it occurs in large amounts on the surfaces of HNS neurons and astrocytes. Tenascin-C, on the other hand, possesses adhesive and repulsive properties; it is secreted by HNS astrocytes and occurs in extracellular spaces and on cell surfaces after interaction with appropriate ligands. These molecules have been considered permissive factors for morphological plasticity. However, because of their localization and inherent properties, they may also serve to modulate the extracellular environment and in consequence, synaptic and volume transmission in a system in which the extracellular compartment is constantly being modified.  相似文献   

20.
Dynamics of the total activity of genetic amylase systems was studied in ontogenesis of 102 Pekin ducks of different generations. Regularities are described showing the dependence of the detected changes on the growth rate of animals. The equations presented permit determining the amylolytic activity which is necessary to support the physiological regeneration and the growth rate. The time and quantity dependences are shown for changes in the amylase system activity in organs and blood with an increase in the live mass and mass of organs. Issuing from the data presented, possible mechanism of the organism growth control is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号