首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified several interspecific pairs of S haplotypes having highly similar SRK and SP11/SCR sequences between Brassica oleracea and Brassica rapa. The recognition specificities of S haplotypes in these pairs were examined with three different methods. Stigmas of interspecific hybrids between an S-32 homozygote in B. oleracea and an S-60 homozygote in B. rapa, which were produced to avoid the interspecific incompatibility between the two species, showed incompatibility to the pollen of an S-8 homozygote in B. rapa and to the pollen of an S-15 homozygote in B. oleracea, while it showed compatibility to the pollen of other S haplotypes, suggesting B. oleracea S-32 and B. rapa S-60 have the same recognition specificity as B. rapa S-8 and B. oleracea S-15. Pollen grains of transgenic S-60 homozygous plants in B. rapa carrying a transgene of SP11-24 from B. oleracea were incompatible to B. rapa S-36 stigma, indicating that B. oleracea S-24 and B. rapa S-36 have the same recognition specificity. Application of the SP11 protein of B. rapa S-41 and S-47 onto the surface of B. oleracea S-64 stigmas and S-12 stigmas, respectively, resulted in the incompatibility reaction to pollen grains of another S haplotype, but application onto the stigmas of other S haplotypes did not, suggesting that B. oleracea S-64 stigmas and S-12 stigmas recognized the B. rapa SP11-41 and SP11-47 proteins as self SP11 proteins, respectively. Besides having evolutionary implications, finding of many interspecific pairs of S haplotypes can provide insight into the molecular mechanism of self-recognition. Comparing deduced amino-acid sequences of SP11 proteins and SRK proteins in the pairs, regions of SP11 and SRK important for self-recognition are discussed.  相似文献   

2.
To perform comparative studies of CR (clubroot resistance) loci in Brassica oleracea and Brassica rapa and to develop marker-assisted selection in B. oleracea, we constructed a B. oleracea map, including specific markers linked to CR genes of B. rapa. We also analyzed CR-QTLs using the mean phenotypes of F3 progenies from the cross of a resistant double-haploid line (Anju) with a susceptible double-haploid line (GC). In the nine linkage groups obtained (O1-O9), the major QTL, pb-Bo(Anju)1, was derived from Anju with a maximum LOD score (13.7) in O2. The QTL (LOD 5.1) located in O5, pb-Bo(GC)1, was derived from the susceptible GC. Other QTLs with smaller effects were found in O2, O3, and O7. Based on common markers, it was possible to compare our finding CR-QTLs with the B. oleracea CR loci reported by previous authors; pb-Bo(GC)1 may be identical to the CR-QTL reported previously or a different member contained in the same CR gene cluster. In total, the markers linked to seven B. rapa CR genes were mapped on the B. oleracea map. Based on the mapping position and markers of the CR genes, informative comparative studies of CR loci between B. oleracea and B. rapa were performed. Our map discloses specific primer sequences linked to CR genes and includes public SSR markers that will promote pyramiding CR genes in intra- and inter-specific crosses in Brassica crops. Five genes involved in glucosinolates biosynthesis were also mapped, and GSL-BoELONG and GSL-BoPro were found to be linked to the pb-Bo(Anju)1 and Bo(GC)1 loci, respectively. The linkage drag associated with the CR-QTLs is briefly discussed.  相似文献   

3.
Resistance to six known races of black rot in crucifers caused by Xanthomonas campestris pv. campestris (Pammel) Dowson is absent or very rare in Brassica oleracea (C genome). However, race specific and broad-spectrum resistance (to type strains of all six races) does appear to occur frequently in other brassica genomes including B. rapa (A genome). Here, we report the genetics of broad spectrum resistance in the B. rapa Chinese cabbage accession B162, using QTL analysis of resistance to races 1 and 4 of the pathogen. A B. rapa linkage map comprising ten linkage groups (A01–A10) with a total map distance of 664 cM was produced, based on 223 AFLP bands and 23 microsatellites from a F2 population of 114 plants derived from a cross between the B. rapa susceptible inbred line R-o-18 and B162. Interaction phenotypes of 125 F2 plants were assessed using two criteria: the percentage of inoculation sites in which symptoms developed, and the severity of symptoms per plant. Resistance to both races was correlated and a cluster of highly significant QTL that explained 24–64% of the phenotypic variance was located on A06. Two additional QTLs for resistance to race 4 were found on A02 and A09. Markers closely linked to these QTL could assist in the transference of the resistance into different B. rapa cultivars or into B. oleracea.  相似文献   

4.
Modification of the Pollen-Stigma Interaction in Brassica oleracea by Water   总被引:2,自引:0,他引:2  
The presence of a film of distilled water on the stigma surfaceof freshly opened flowers results in complete inhibition ofpollen following both incompatible and compatible pollinationsin self-incompatible (SI) genotypes of Brassica oleracea, SIgenotypes of B. campestris and one self-compatible (SC) genotypeof B. campestris. The application of water to the stigmas afterpollination also resulted in a marked reduction in pollen germinationand tube penetration. An increase in the time intervals betweenthe application of pollen onto the stigma and the water treatmentprogressively reduced this inhibition. Pollen germination wasalso completely inhibited when stigmas from freshly-opened flowersof SI B. campestris and B. oleracea genotypes were washed inwater, dried and pollinated with pollen grains of either compatibility.The ability of stigmas to induce pollen germination and tubegrowth was restored over a period, the length of which was dependenton the incompatibility (S) genotype. Stigmas of B. napus (SC)and SC mutants of SI B. campestris were found to be affectedby washing, but stigmas of a SC variety of B. campestris andthe immature stigmas from buds of B. oleracea were found tobe considerably less affected. Microscopic examination of pollenplaced on washed stigmas reveals that grains, irrespective oftheir compatibility, fail to hydrate normally. When inducedto hydrate by raising atmospheric humidity, pollen grains onwashed stigmas did germinate, but most of the tubes failed topenetrate the papillar wall and very few entered the style.It is proposed that the water treatment mobilises componentsof the pellicle which reorganize to block the activity of molecules,present in both SC and SI individuals, responsible for establishingfull contact between the pellicle and pollen grain coating. Brassica, pellicle, pollen, recognition, self-incompatibility  相似文献   

5.
Brassica napus, an allopolyploid species having the A genome of B. rapa and the C genome of B. oleracea, is self-compatible, although both B. rapa and B. oleracea are self-incompatible. We have previously reported that SP11/SCR alleles are not expressed in anthers, while SRK alleles are functional in the stigma in B. napus cv. ‘Westar’, which has BnS-1 similar to B. rapa S-47 and BnS-6 similar to B. oleracea S-15. This genotype is the most frequent S genotype in B. napus, and we hypothesized that the loss of the function of SP11 is the primary cause of the self-compatibility of ‘Westar’. To verify this hypothesis, we transformed ‘Westar’ plants with the SP11 allele of B. rapa S-47. All the transgenic plants and their progeny were completely self-incompatible, demonstrating self-compatibility to be due to the S haplotype having the non-functional SP11 allele in the A genome, which suppresses a functional recessive SP11 allele in the C genome. An artificially synthesized B. napus line having two recessive SP11 alleles was developed by interspecific hybridization between B. rapa and B. oleracea. This line was self-incompatible, but F1 hybrids between this line and ‘Westar’ were self-compatible. These results suggest that the self-compatibility mechanism of ‘Westar’ is applicable to F1 seed production in B. napus.  相似文献   

6.
The crossability between Brassica tournefortii (TT, 2n = 20) and Brassica rapa (AA, 2n = 20) and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were obtained only when B. tournefortii was involved as a female parent. The hybrid plants were intermediate for most of the morphological attributes and were found to be free from white rust under field conditions. The F1 plants showed poor pollen fertility, although occasional seed set was achieved from open pollination. Self-pollination or backcrosses did not yield any seeds in these plants. The occurrence of chromosome association ranging from bivalents (0–7), trivalents (0–2) to a rare quadrivalent (0–1) in the dihaploid hybrids indicates pairing between the T and A genomes. The homoeologous pairing coupled with seed set in the F1 plants offer an opportunity for interspecific gene transfers from B. tournefortii to B. rapa and vice-versa through interspecific hybridization. Received: 3 July 2000 / Accepted: 22 September 2000  相似文献   

7.
Seed coat phenolic compounds represent important antinutritive fibre components that cause a considerable reduction in value of seed meals from oilseed rape (Brassica napus). The nutritionally most important fibre compound is acid detergent lignin (ADL), to which a significant contribution is made by phenylpropanoid-derived lignin precursors. In this study, we used bulked-segregant analysis in a population of recombinant inbred lines (RILs) from a cross of the Chinese oilseed rape lines GH06 (yellow seed, low ADL) and P174 (black seed, high ADL) to identify markers with tight linkage to a major quantitative trait locus (QTL) for seed ADL content. Fine mapping of the QTL was performed in a backcross population comprising 872 BC1F2 plants from a cross of an F7 RIL from the above-mentioned population, which was heterozygous for this major QTL and P174. A 3:1 phenotypic segregation for seed ADL content indicated that a single, dominant, major locus causes a substantial reduction in ADL. This locus was successively narrowed to 0.75 cM using in silico markers derived from a homologous Brassica rapa sequence contig spanning the QTL. Subsequently, we located a B. rapa orthologue of the key lignin biosynthesis gene CINNAMOYL CO-A REDUCTASE 1 (CCR1) only 600 kbp (0.75 cM) upstream of the nearest linked marker. Sequencing of PCR amplicons, covering the full-length coding sequences of Bna.CCR1 homologues, revealed a locus in P174 whose sequence corresponds to the Brassica oleracea wild-type allele from chromosome C8. In GH06, however, this allele is replaced by a homologue derived from chromosome A9 that contains a loss-of-function frameshift mutation in exon 1. Genetic and physical map data infer that this loss-of-function allele has replaced a functional Bna.CCR1 locus on chromosome C8 in GH06 by homoeologous non-reciprocal translocation.  相似文献   

8.
Resistance to Plasmodiophora brassicae Woron, the causal fungus of clubroot, was examined in an F2 population of a cross between a clubroot-resistant kale (Brassica oleracea L. var. acephala) and a susceptible cauliflower (Brassica oleracea L. var. botrytis). QTL detection was performed with RAPD markers. Two resistance notations, carried out at different times after inoculation, were used. Three markers were associated with these two notations and three were specifically linked to only one notation. QTL analysis suggests the existence of at least two genetic mechanisms implicated in the resistance phenomenon.  相似文献   

9.
Summary An SLG gene derived from the S-locus and encoding and S-locus-specific glycoprotein of Brassica campestris L. was introduced via Agrobacterium-mediated transformation into B. oleracea L. A self-incompatible hybrid and another with partial self-compatibility were used as recipients. The transgenic plants were altered in their pollen-stigma interaction and were fully compatible upon self-pollination. Reciprocal crosses between the transgenic plants and untransformed control plants indicated that the stigma reaction was changed in one recipient strain while the pollen reaction was altered in the other. Due to interspecific incompatibility, we could not demonstrate whether or not the introduced SLG gene confers a new allelic specificity in the transgenic plants. Our results show that the introduced SLG gene perturbs the self-incompatibility phenotype of stigma and pollen.  相似文献   

10.
Mapping loci controlling flowering time in Brassica oleracea   总被引:6,自引:0,他引:6  
The timing of the transition from vegetative to reproductive phase is a major determinant of the morphology and value of Brassica oleracea crops. Quantitative trait loci (QTLs) controlling flowering time in B. oleracea were mapped using restriction fragment length polymorphism (RFLP) loci and flowering data of F3 families derived from a cabbage by broccoli cross. Plants were grown in the field, and a total of 15 surveys were made throughout the experiment at 5–15 day intervals, in which plants were inspected for the presence of flower buds or open flowers. The flowering traits used for data analysis were the proportion of annual plants (PF) within each F3 family at the end of the experiment, and a flowering-time index (FT) that combined both qualitative (annual/biennial) and quantitative (days to flowering) information. Two QTLs on different linkage groups were found associated with both PF and FT and one additional QTL was found associated only with FT. When combined in a multi-locus model, all three QTLs explained 54.1% of the phenotypic variation in FT. Epistasis was found between two genomic regions associated with FT. Comparisons of map positions of QTLs in B. oleracea with those in B. napus and B. rapa provided no evidence for conservation of genomic regions associated with flowering time between these species.  相似文献   

11.
This study presents the results of experiments concerning: (1) interspecific hybridization of Brassica oleracea × Brassica rapa via application of in vitro placental pollination and (2) embryological analysis of the process of resynthesis of Brassica napus. In order to overcome certain stigma/style barriers, B. rapa pollen was placed in vitro on an opened B. oleracea ovary (with style removed). Pollinated ovaries were cultured on Murashige and Skoog (MS) medium. After 24-d culture, the developing embryos were isolated from immature seeds and transferred onto MS medium supplemented with 0.47 μM kinetin, 0.49 μM 1-naphthaleneacetic acid, and 10% (v/v) coconut water. When the embryos had turned green, they were immediately placed onto MS medium with 100 μM kinetin. After development of the seedling, plantlets were transferred to soil. Chromosome doubling was achieved after another week. Cytometric analysis of nuclear DNA confirmed the hybrid nature of the plants. Resynthesis of B. napus can be performed through interspecific hybridization of B. oleracea × B. rapa followed by embryo rescue and genome doubling.  相似文献   

12.
Pandey , K.K. (Crop Res. Div., D.S. & I.R., Lincoln, Christchurch, New Zealand.) Interspecific incompatibility in Solanum species. Amer. Jour. Bot. 49(8): 874–882. Illus. 1962.—A diallel cross involving 11 self-incompatible and 3 self-compatible species of Solanum was made to study the genetic basis of interspecific incompatibility. Interspecific incompatibility was not limited to crosses in which a self-compatible species was used as the male parent onto a self-incompatible species (unilateral incompatibility). A number of crosses between self-incompatible species were incompatible. In one cross, Q vernei X verrucosum, a self-compatible species was successful as a pollen parent with a self-incompatible species. Unlike other hybrids between self-compatible and self-incompatible species, which are self-incompatible, these F1 hybrids were self-fertile, and cross-fertile among themselves and with both parents. The self-fertile S. polyadenium was cross-incompatible as a female as well as a male parent with all other species. It is suggested that the unilateral incompatibility is a property of the allele SC which originated as a consequence of one kind of breakdown of the SI gene; the SC allele produces “bare” pollen growth substances which are inactivated in an incompatible style. It is proposed that the failure of the principle of unilateral interspecific incompatibility in solanaceous species may be due to the action of alleles at the second incompatibility locus revealed in certain Mexican species. It is assumed that the South American species are selected intraspecifically only for the action of S alleles but that in certain interspecific crosses and rarely in intraspecific crosses the alleles at the second locus may be expressed, thus interfering with the usual action of S alleles. The F1 hybrids Q verrucosum (self-fertile) X simplicifolium (self-sterile) were self-incompatible at the tetraploid as well as the diploid level, and their cross-compatibility behavior was consistent with the expected activity of the SC and SI alleles of the 2 parents respectively.  相似文献   

13.
Self-incompatibility (SI) is reported to play a key role in the evolution of species as it promotes their outcrossing through the recognition and rejection of self-pollen grains. In Brassica, two S-locus genes expressed in the stigma, S-locus glycoprotein (SLG) gene and S-locus receptor kinase (SRK) gene, and one expressed in the pollen, S-locus protein 11 (SP11) gene, were linked as an S haplotype. In order to analyze the evolutionary relationships of S haplotypes in Brassica, a total of 39 SRK, 37 SLG, and 58 SP11 sequences of Brassica oleracea, Brassica rapa and Brassica napus were aligned. Two phylogenetic trees with similar pattern were constructed based on the nucleotide sequences of SRK/SLG and SP11, respectively. Class I and class II alleles were clustered into two distinct groups, and alleles from different species, including all the interspecific pairs of S haplotypes, were closely related to each other. The S-locus genes identified in B. napus were intermingled in phylogenetic trees. All these observations showed that class I and class II S haplotypes diverged ahead of the species differentiation in Brassica. The evolution and the genetic diversity of S haplotypes in Brassica were discussed. Moreover, the relationships between S haplotypes and SI phenotypes in Brassica, especially in B. napus, were also discussed.  相似文献   

14.
De-novo synthesis of the S-allele-specific glycoproteins of Brassica oleracea is demonstrated in stigmas at different developmental stages. Excised stigmas incorporate 14C-labeled amino acids into their S-glycoproteins early in development and before the self-incompatibility response is acquired, but the rate of synthesis accelerates prior to anthesis, resulting in the accumulation of high levels of the S-glycoproteins in the stigma and coinciding with the acquisition of the pollen-stigma incompatibility response. Since the self-compatible and self-incompatible zones of developing inflorescences are very sharply delineated, a threshold quantity of S-glycoproteins appears to be critical for the onset of self-incompatibility. Incorporation experiments in which [35Smethionine was applied to intact stigma surfaces indicate that the papillae are the main sites of synthesis of the S-specific glycoproteins.Abbreviations IEF isoelectric focusing - SC self-compatibility - SDS sodium dodecyl sulfate - SI self-incompatibility  相似文献   

15.
A segregating population of F1-derived doubled haploid (DH) lines of Brassica oleracea was used to detect and locate QTLs controlling 27 morphological and developmental traits, including leaf, flowering, axillary bud and stem characters. The population resulted from a cross between two very different B. oleracea crop types, an annual cauliflower and a biennial Brussels sprout. A principal component analysis (PCA), based on line means, allowed all the traits to be grouped into distinct categories according to the first five Principal Components. These were: leaf traits (PC1), flowering traits (PC2), axillary bud traits (PC3 and 5) and stem traits (PC4). Between zero and four putative QTL were located per trait, which individually explained between 6% and 43% of the additive genetic variation, using the multiple-marker regression approach to QTL mapping. For lamina width, bare petiole length and stem length two QTL with opposite effects were detected on the same linkage groups. Intra- and inter-specific comparative mapping using RFLP markers identified a QTL on linkage group O8 accounting for variation in vernalisation, which is probably synonymous with a QTL detected on linkage group N19 of Brassica napus. In addition, a QTL for petiole length detected on O3 of this study appeared to be homologous to a QTL detected on another B. oleracea genetic map (Camargo et al. 1995). Received: 28 March 2001 / Accepted: 25 June 2001  相似文献   

16.
In F1 hybrid breeding of Brassica vegetables utilizing the self-incompatibility system, identification of S genotypes in breeding lines is required. In the present study, we developed S-tester lines of 87 S haplotypes, i.e., 42 S haplotypes in B. rapa and 45 S haplotypes in B. oleracea. With these materials, we established a simple, efficient, and reliable dot-blot technique for S genotyping for 40 S haplotypes of B. rapa and and 33 of B. oleracea using allele-specific oligonucleotide probes and allele-specific primer pairs designed from sequences of each SP11 allele. In this method, DNA fragments amplified using multiplex primer pairs with digoxigenin-dUTP were hybridized with dot-blotted allele-specific oligonucleotide probes with distinct signals. In addition, we developed a screening method for identification of plants harboring a particular S haplotype using a labeled allele-specific oligonucleotide probe. This method is considered to be useful for purity testing of F1 hybrid seeds.  相似文献   

17.
Thirty Brassica napus lines have been developed through interspecific hybridization of B. oleracea and B. campestris lines with defined S-allele constitutions. These lines, which represent 29 different S-allele combinations, were tested in a diallel of test-pollinations to determine the activity of the introgressed S-alleles and intergenomic dominance relationships. Some consistent trends were observed: B. oleracea S-alleles high in the dominance series (e.g. S8, S14, S29) were always active in the resynthesized B. napus lines, whereas recessive S-alleles (S2, S15) lost their activity in some test combinations. The B. campestris S-alleles were active in most cases, although 2 alleles were partially inactivated by the recessive B. oleracea allele S15.  相似文献   

18.
Interspecific crosses contribute significantly to plant evolution enabling gene exchanges between species. The efficiency of interspecific crosses depends on the similarity between the implicated genomes as high levels of genome similarity are required to ensure appropriate chromosome pairing and genetic recombination. Brassica napus (AACC) is an allopolyploid, resulting from natural hybridization between Brassica rapa (AA) and Brassica oleracea (CC), both being diploid species derived from a common ancestor. To study the relationships between genomes of these Brassica species, we have determined simultaneously the pairing and recombination pattern of A and C chromosomes during meiosis of AAC triploid hybrids, which result from the interspecific cross between natural B. napus and B. rapa. Different AAC triploid hybrids and their progenies have been analysed using cytogenetic, BAC-FISH, and molecular techniques. In 71% of the pollen mother cells, homologous A chromosomes paired regularly, and usually one chromosome of each pair was transmitted to the progeny. C chromosomes remained mainly univalent, but were involved in homoeologous pairing in 21.5% of the cells, and 13% of the transmitted C chromosomes were either recombined or broken. The rate of transmission of C chromosomes depended on the identity of the particular chromosome and on the way the hybrid was crossed, as the male or as the female parent, to B. napus or to B. rapa. Gene transfers in triploid hybrids are favoured between A genomes of B. rapa and B. napus, but also occur between A and C genomes though at lower rates.  相似文献   

19.
Pollen-tube growth and seed siring ability were measured in crosses between the Louisiana iris species Iris fulva and Iris hexagona and their F1 and F2 hybrids. Flowers of the parental species were pollinated with self, outcross intraspecific, and interspecific pollen. Pollen-tube lengths were similar for all three pollen types in I. fulva, but in I. hexagona interspecific pollen tubes were longer than intraspecific pollen tubes. Pollen-tube lengths also differed for F1 and F2 flowers pollinated with I. fulva, I. hexagona, and hybrid pollen. For both hybrid classes I. fulva pollen tubes were the shortest while pollen tubes from I. hexagona and hybrids grew the furthest. Mixtures of genetically marked pollen were used to assess the seed siring ability of intra- and interspecific pollen in the parental species by varying the proportion of each pollen type in a replacement series design. For both species, the observed proportions of hybrid seeds were lower than the expected based on the frequency of each pollen type in the mixtures across all treatments. Flowers of I. fulva produced less than 10% hybrid progeny even when 75% of the pollen applied to stigmas was derived from interspecific flowers. The frequency of hybrid seed formation was somewhat greater in I. hexagona, but was still significantly lower than expected across all mixture treatments. Seed set per fruit remained constant across the mixture treatments for both species, but in I. fulva fruit set decreased with an increase in the proportion of interspecific pollen. The data indicate that both pre- and postfertilization processes contribute to discrimination against hybrid seed formation.  相似文献   

20.
Summary A cDNA sequence homologous to the Brassica self-incompatibility locus specific glycoprotein (SLSG) sequence was isolated from stigmas of B. oleracea plants homozygous for the S5 allele. The nucleotide sequence of this cDNA was obtained and compared with the S6 allelic form of the SLSG. Evidence is presented which indicates that this sequence does not specify the self-incompatibility response of pollen.Abbreviations SDS sodium dodecyl sulphate - PVP polyvinylpyrrolidone - BSA bovine serum albumin - SLSG self-incompatibility locus specific glycoprotein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号