首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.  相似文献   

2.
3.
The hominoid primates (apes and humans) exhibit remarkable diversity in their social and sexual behavioral systems. This is reflected in many ways in their anatomy and physiology. For example, the testes and seminal vesicles are relatively large in species with high sperm competition like the chimpanzee and small in species with low or no sperm competition like the gorilla. Additionally, the chimpanzee is the only hominoid primate known to produce a firm copulatory plug, which presumably functions in sperm competition by blocking insemination of subsequent males. Here we examine the molecular evolution of the semenogelin genes (SEMG1 and SEMG2), which code for the predominant structural proteins in human semen. High molecular weight complexes of these proteins are responsible for the viscous gelatinous consistency of human semen; their rodent homologs are responsible for the formation of a firm copulatory plug. Chimpanzees have an expanded SEMG1 gene caused by duplications of tandem repeats, each encoding 60 amino acids, resulting in a protein nearly twice as long as that of humans. In contrast, at both SEMG1 and SEMG2 we observed several gorilla haplotypes that contain at least one premature stop codon. We suggest that these structural changes in the semenogelin proteins that have arisen since the human–chimpanzee–gorilla split may be responsible for the physiological differences between these species ejaculated semen that correlate with their sociosexual behavior. Present address: (Jensen-Seaman) Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA  相似文献   

4.
5.
A remarkable diversity of venom peptides is expressed in the genus Conus (known as “conotoxins” or “conopeptides”). Between 50 and 200 different venom peptides can be found in a single Conus species, each having its own complement of peptides. Conopeptides are encoded by a few gene superfamilies; here we analyze the evolution of the A-superfamily in a fish-hunting species clade, Pionoconus. More than 90 conopeptide sequences from 11 different Conus species were used to build a phylogenetic tree. Comparison with a species tree based on standard genes reveals multiple gene duplication events, some of which took place before the Pionoconus radiation. By analysing several A-conopeptides from other Conus species recorded in GenBank, we date the major duplication events after the divergence between fish-hunting and non-fish-hunting species. Furthermore, likelihood approaches revealed strong positive selection; the magnitude depends on which A-conopeptide lineage and amino-acid locus is analyzed. The four major A-conopeptide clades defined are consistent with the current division of the superfamily into families and subfamilies based on the Cys pattern. The function of three of these clades (the κA-family, the α4/7-subfamily, and α3/5-subfamily) has previously been characterized. The function of the remaining clade, corresponding to the α4/4-subfamily, has not been elucidated. This subfamily is also found in several other fish-hunting species clades within Conus. The analysis revealed a surprisingly diverse origin of α4/4 conopeptides from a single species, Conus bullatus. This phylogenetic approach that defines different genetic lineages of Conus venom peptides provides a guidepost for identifying conopeptides with potentially novel functions.  相似文献   

6.
Haptoglobin (Hp) is a hemoglobin-binding plasma protein consisting of two types of chains, called α and β, which originate from a common polypeptide. In humans, but not in other mammals, Hp has been shown to occur in two allelic forms, Hp1 and Hp2, which differ in the length of the α-chain. The longer α-chain (in Hp2) seems to have arisen by an internal duplication of a gene segment coding for almost the entire α-chain of Hp1. In this article we show that Hp of cow (Bos taurus) contains an α-chain, the structure of which is similar to that of the human Hp2 α-chain. Furthermore, comparison of the structure of bovine Hp and human Hp2 suggests that the bovine gene arose by a duplication of the gene segment homologous to that duplicated in human Hp2. However, a phylogenetic analysis indicates that the two genes were formed independently. The evolutionary pressure that has led to the fixation of the Hps with a longer α-chain is not known. Reviewing Editor: Dr. Manyuan Long  相似文献   

7.
Among land plants, mitochondrial and plastid group II introns occasionally encode proteins called maturases that are important for splicing. Angiosperm nuclear genomes also encode maturases that are targeted to the organelles, but it is not known whether nucleus-encoded maturases exist in other land plant lineages. To examine the evolutionary diversity and history of this essential gene family, we searched for maturase homologs in recently sequenced nuclear and mitochondrial genomes from diverse land plants. We found that maturase content in mitochondrial genomes is highly lineage specific, such that orthologous maturases are rarely shared among major land plant groups. The presence of numerous mitochondrial pseudogenes in the mitochondrial genomes of several species implies that the sporadic maturase distribution is due to frequent inactivation and eventual loss over time. We also identified multiple maturase paralogs in the nuclear genomes of the lycophyte Selaginella moellendorffii, the moss Physcomitrella patens, and the representative angiosperm Vitis vinifera. Phylogenetic analyses of organelle- and nucleus-encoded maturases revealed that the nuclear maturase genes in angiosperms, lycophytes, and mosses arose by multiple shared and independent transfers of mitochondrial paralogs to the nuclear genome during land plant evolution. These findings indicate that plant mitochondrial maturases have experienced a surprisingly dynamic history due to a complex interaction of multiple evolutionary forces that affect the rates of maturase gain, retention, and loss.  相似文献   

8.
Despite an abundance of studies on chromatin states and dynamics, there is an astonishing dearth of information on the expression of genes responsible for regulating histone and DNA modifications. We used here a set of 156 defined epigenetic modifier genes (EMG) and profiled their expression pattern in cells of different lineages. As reference value, expression data from human embryonic stem cells (hESC) were used. Hepatocyte-like cells were generated from hESC, and their EMG expression was compared to primary human liver cells. In parallel, we generated postmitotic human neurons (Lu d6), and compared their relative EMG expression to human cortex (Ctx). Clustering analysis of all cell types showed that neuronal lineage samples grouped together (94 similarly regulated EMG), as did liver cells (61 similarly-regulated), while the two lineages were clearly distinct. The general classification was followed by detailed comparison of the major EMG groups; genes that were higher expressed in differentiated cells than in hESC included the acetyltransferase KAT2B and the methyltransferase SETD7. Neuro-specific EMGs were the histone deacetylases HDAC5 and HDAC7, and the arginine-methyltransferase PRMT8. Comparison of young (Lu d6) and more aged (Ctx) neuronal samples suggested a maturation-dependent switch in the expression of functionally homologous proteins. For instance, the ratio of the histone H3 K27 methyltransfereases, EZH1 to EZH2, was high in Ctx and low in Lu d6. The same was observed for the polycomb repressive complex 1 (PRC1) subunits CBX7 and CBX8. A large proportion of EMGs in differentiated cells was very differently expressed than in hESC, and absolute levels were significantly higher in neuronal samples than in hepatic cells. Thus, there seem to be distinct qualitative and quantitative differences in EMG expression between cell lineages.  相似文献   

9.
Gene duplications restricted to single lineage combined with an asymmetric evolution of the resulting genes may play particularly important roles in this lineage’s biology. We searched and identified asymmetrical evolution in nine gene families that duplicated exclusively in rodents and are present as single-copies in human, dog, cow, elephant, opossum, chicken, lizard, and Western clawed frog. Among those nine gene families are Fas apoptosis inhibitory molecule (Faim), implicated in apoptosis, and Sperm antigen 6 (Spag6), implicated in sperm mobility. Both genes were duplicated in or before the Muroidea ancestor. Due to the highly asymmetric evolution of the resulting paralogs, the existence of these duplications had been previously overlooked. Interestingly, Spag6, previously regarded and characterized as a single-copy ortholog of human Spag6, turns out to be a Muroidea-specific paralog. Conversely, the newly identified, highly divergent Spag6-BC061194 is in fact the parental gene. In consequence, this gene represents a rare exception from the general rule of rapid evolution of derived rather than parental genes following gene duplication. Unusual genes such as murine Spag6 may help to understand which mechanisms are responsible for this rule.  相似文献   

10.
Peculiar evolutionary properties of the subunit 8 of mitochondrial ATP synthase (ATPase8) are revealed by comparative analyses carried out between both closely and distantly related species of echinoderms. The analysis of nucleotide substitution in the three echinoids demonstrated a relaxation of amino acid functional constraints. The deduced protein sequences display a well conserved domain at the N-terminus, while the central part is very variable. At the C-terminus, the broad distribution of positively charged amino acids, which is typical of other organisms, is not conserved in the two different echinoderm classes of the sea urchins and of the sea stars. Instead, a motif of three amino acids, so far not described elsewhere, is conserved in sea urchins and is found to be very similar to the motif present in the sea stars. Our results indicate that the N-terminal region seems to follow the same evolutionary pattern in different organisms, while the maintenance of the C-terminal part in a phylum-specific manner may reflect the co-evolution of mitochondrial and nuclear genes.  相似文献   

11.
12.
Evolution of Gene Duplication in Plants   总被引:2,自引:0,他引:2  
  相似文献   

13.
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.  相似文献   

14.
15.
Cyclic nucleotides (both cAMP and cGMP) play extremely important roles in cyanobacteria, such as regulating heterocyst formation, respiration, or gliding. Catalyzing the formation of cAMP and cGMP from ATP and GTP is a group of functionally important enzymes named adenylate cyclases and guanylate cyclases, respectively. To understand their evolutionary patterns, in this study, we presented a systematic analysis of all the cyclases in cyanobacterial genomes. We found that different cyanobacteria had various numbers of cyclases in view of their remarkable diversities in genome size and physiology. Most of these cyclases exhibited distinct domain architectures, which implies the versatile functions of cyanobacterial cyclases. Mapping the whole set of cyclase domain architectures from diverse prokaryotic organisms to their phylogenetic tree and detailed phylogenetic analysis of cyclase catalytic domains revealed that lineage-specific domain recruitment appeared to be the most prevailing pattern contributing to the great variability of cyanobacterial cyclase domain architectures. However, other scenarios, such as gene duplication, also occurred during the evolution of cyanobacterial cyclases. Sequence divergence seemed to contribute to the origin of putative guanylate cyclases which were found only in cyanobacteria. In conclusion, the comprehensive survey of cyclases in cyanobacteria provides novel insight into their potential evolutionary mechanisms and further functional implications.  相似文献   

16.
17.
SRY基因在人猿超科和旧大陆猴中具有不同的进化规律   总被引:1,自引:0,他引:1  
王晓霞  吕雪梅  张亚平 《遗传学报》2000,27(10):847-852
通过PCR扩增、测序,得到了白臀叶猴和红面猴的SRY基因全序列。结合现有的灵长类其他物种序列进行分析,验证了HMG盒的保守性。通过构建系统发育树,比较旧大陆猴和人猿超科两个类群内和类群间HMG盒侧翼序列Ka/Ks的比率。有趣的是,人猿超科两物种比较呈现较高的Ka/Ks比值,但在旧大陆猴中及旧大陆猴与狨猴间的Ka/Ks比值显著低于人猿超科的,呈现很不同的格局。同时,对于HMG盒序列,Ka/Ks比值在  相似文献   

18.
19.
The evolutionary origin of “orphan” genes, genes that lack sequence similarity to any known gene, remains a mystery. One suggestion has been that most orphan genes evolve rapidly so that similarity to other genes cannot be traced after a certain evolutionary distance. This can be tested by examining the divergence rates of genes with different degrees of lineage specificity. Here the lineage specificity (LS) of a gene describes the phylogenetic distribution of that gene’s orthologues in related species. Highly lineage-specific genes will be distributed in fewer species in a phylogeny. In this study, we have used the complete genomes of seven ascomycotan fungi and two animals to define several levels of LS, such as Eukaryotes-core, Ascomycota-core, Euascomycetes-specific, Hemiascomycetes-specific, Aspergillus-specific, and Saccharomyces-specific. We compare the rates of gene evolution in groups of higher LS to those in groups with lower LS. Molecular evolutionary analyses indicate an increase in nonsynonymous nucleotide substitution rates in genes with higher LS. Several analyses suggest that LS is correlated with the evolutionary rate of the gene. This correlation is stronger than those of a number of other factors that have been proposed as predictors of a gene’s evolutionary rate, including the expression level of genes, gene essentiality or dispensability, and the number of protein-protein interactions. The accelerated evolutionary rates of genes with higher LS may reflect the influence of selection and adaptive divergence during the emergence of orphan genes. These analyses suggest that accelerated rates of gene evolution may be responsible for the emergence of apparently orphan genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

20.
Nuclear integrations of mitochondrial DNA (numts) are widespread among eukaryotes, although their prevalence differs greatly among taxa. Most knowledge of numt evolution comes from analyses of whole-genome sequences of single species or, more recently, from genomic comparisons across vast phylogenetic distances. Here we employ a comparative approach using human and chimpanzee genome sequence data to infer differences in the patterns and processes underlying numt integrations. We identified 66 numts that have integrated into the chimpanzee nuclear genome since the human–chimp divergence, which is significantly greater than the 37 numts observed in humans. By comparing these closely related species, we accurately reconstructed the preintegration target site sequence and deduced nucleotide changes associated with numt integration. From >100 species-specific numts, we quantified the frequency of small insertions, deletions, duplications, and instances of microhomology. Most human and chimpanzee numt integrations were accompanied by microhomology and short indels of the kind typically observed in the nonhomologous end-joining pathway of DNA double-strand break repair. Human-specific numts have integrated into regions with a significant deficit of transposable elements; however, the same was not seen in chimpanzees. From a separate data set, we also found evidence for an apparent increase in the rate of numt insertions in the last common ancestor of humans and the great apes using a polymerase chain reaction–based screen. Last, phylogenetic analyses indicate that mitochondrial-numt alignments must be at least 500 bp, and preferably >1 kb in length, to accurately reconstruct hominoid phylogeny and recover the correct point of numt insertion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号