首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although non-volatile substances toxic to plant pathogenic microorganisms have been extensively studied over the years, few studies have focused on microbial volatile organic compounds (VOCs). The VOCs produced by the yeast Saccharomyces cerevisiae strain CR-1, used in fermentative processes for fuel ethanol production, are able to inhibit the vegetative development of the fungus Guignardia citricarpa, causal agent of the disease citrus black spot. How microbial VOCs affect the development of fungi is not known. Thus, the objective of the present work was to study the effect of the artificial mixture of VOCs identified from S. cerevisiae on intracellular enzymes involved in the mycelial morphogenesis in G. citricarpa. The phytopathogenic fungus was exposed to artificial mixture of VOCs constituted by alcohols (ethanol, 3-methyl-1-butanol, 2-methyl-1-butanol and phenylethyl alcohol) and esters (ethyl acetate and ethyl octanoate) in the proportions naturally found in the atmosphere produced by the yeast. The VOCs inhibited considerably the mycelial development and interfered negatively with the production of the morphogenesis-related enzymes. After 72 h of exposure to the VOCs the laccase and tyrosinase activities decreased 46 and 32%, respectively, however, the effect on the chitinase and β-1,3-glucanase activities was lower, 17 and 13% of inhibition, respectively. Therefore, the exposure of the fungus to the antimicrobial volatiles can influence both fungal mycelial growth rate and activity of enzymes implicated in morphogenesis. This knowledge is important to understand the microbial interactions mediated by VOCs in nature and to develop new strategies to control plant pathogens as G. citricarpa in postharvest.  相似文献   

2.
With respect to disease risk for the quarantine fungus Guignardia citricarpa on citrus fruit an accurate diagnosis for routine analysis is required. Also, when inspections have to be performed on imported citrus fruits, a fast detection method is urgently needed. A fast automated DNA extraction method based on magnetic beads combined with a real‐time PCR assay was optimized to improve and advance the routine diagnosis of citrus black spot disease. Real‐time PCR was used for detection of the pathogen G. citricarpa in planta. A specific primer/TaqMan probe combination that discriminates between G. citricarpa and the harmless citrus endophyte Guignardia mangiferae, was designed based on the internal transcribed spacer region of the multi‐copy rDNA gene. Co‐amplification of target DNA along with an internal competitor DNA fragment made the diagnostic assay more reliable to check for false negatives. The real‐time PCR was specific, since no cross reaction was observed with a series of citrus pathogens and related species. The diagnostic assay was performed on lesions dissected from imported diseased oranges. Comparison between the conventional PCR and the real‐time PCR methods showed that the TaqMan method was more sensitive.  相似文献   

3.
4.
As a part of a program aiming at the selection of strains which might be of interest as sources of natural flavouring molecules, the production of volatile organic compounds (VOCs) by 98 ascomycetous yeast strains (representative of 40 species belonging to 12 genera) isolated from tropical environments was investigated. Volatiles produced were sampled by means of headspace solid-phase microextraction (SPME) and the compounds were analysed and identified by gas chromatography–mass spectroscopy (GC–MS). The VOCs produced were found to be alcohols (amyl alcohol and isoamyl alcohol), aldehydes (2-methyl-2-hexenal and 2-isopropyl-5-methyl-2-hexenal) and esters (ethyl isobutyrate, isobutyl acetate, isoamyl acetate, 2-methylbutyl acetate, ethyl isovalerate, isoamyl propionate and phenylmethyl acetate). Differences in VOC profiles were used to cluster the yeast strains into 25 VOC phenotypes. The different frequency of VOC phenotypes in three specific habitats was correlated to the divergent environmental conditions, possibly affecting the selection of specific yeasts. From a biotechnological viewpoint, this study reveals the potentiality of ascomycetous yeasts isolated from tropical environments as a promising source of VOCs relevant in food and fragrance industry. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
FJAT-4748 is a bacterial strain isolated from forest soil samples taken from Dongba Valley, Lijiang, Kunming, Yunnan Province, PR China. This strain was identified as Lysinibacillus sp. based on a 16S rRNA gene sequence analysis. FJAT-4748 has been shown to possess antifungal activity against different fungi, including Colletotrichum acutatum, Aspergillus niger, Fusarium solani, Fusarium moniliforme and Fusarium oxysporum. The results of the present study indicate that this antifungal activity results from volatile organic compounds (VOCs) produced by this strain. The observed inhibition rates of VOCs from FJAT-4748 against these fungi were 100%, 100%, 37.20%, 18.94% and 7.64%, respectively. GC-MS analysis identified 24 VOCs from FJAT-4748, which included different categories of compounds, such as aldehydes, ketones, alcohols, aromatic hydrocarbons and alkanes. Of these 24 VOCs, the most abundant compound was 2-ethyl-1-hexanol, which constituted 36.24% of the total VOCs based on the relative peak area. In the in vitro C. acutatum mycelial growth assay, 2-ethyl-1-hexanol exhibited the strongest activity, with an inhibitory rate of 100% using 10?µL/plate of this VOC. The activity of benzaldehyde was lower. 2-decanone showed the weakest activity among the compounds tested. The inhibitory activity of an artificial mixture of three VOCs against the C. acutatum increased with the amount of artificial mixture used. The inhibition rate reached 100% using 30?µL/plate of this artificial mixture in the plate test. Taken together, these results show that the antifungal VOCs produced by Lysinibacillus sp. FJAT-4748 are potentially useful as agents for controlling anthracnose caused by Colletotrichum acutatum.  相似文献   

6.
Caseinomacropeptide is a polypeptide of 64 amino acid residues (106–169) derived from the C-terminal part of the mammalian milk k-casein. This macropeptide has various biological activities and is used as a functional food ingredient as well as a pharmaceutical compound. The gene encoding the human caseinomacropeptide (hCMP) was synthesized and expressed with an α-factor secretion signal in the two yeast strains, Saccharomyces cerevisiae and Pichia pastoris. The complete polypeptide of the recombinant hCMP was produced and secreted in a culture medium by both the strains, but the highest production was observed in S. cerevisiae with a galactose-inducible promoter. In a fed-batch bioreactor culture, 2.5 g/l of the recombinant hCMP was obtained from the S. cerevisiae at 97 h.  相似文献   

7.
Cells of Kluyveromyces marxianus FII 510700 and Saccharomyces cerevisiae CBS 1907 were autolysed in phosphate buffer, pH 4.5, for a maximum of 10 days to compare chemical changes that occur in the carbohydrate, protein, amino acid and nucleic acid content. Approximately 2.2–3% carbohydrate, 9.5–12% protein, 0.6–1.0% DNA and 6–7% RNA were recovered in the autolysates. The main amino acids were β-alanine, phenylalanine, cysteine, methionine, glutamic acid and isoleucine. No significant differences in the yeast autolysates of K. marxianus and S. cerevisiae were observed. Consequently, K. marxianus produced from lactose-based media has potential as a source of yeast autolysates used in the food industry. Electronic Publication  相似文献   

8.
Jaibangyang  Sopin  Nasanit  Rujikan  Limtong  Savitree 《BioControl》2021,66(3):433-443

As shown in our previous study, Kwoniella heveanensis DMKU-CE82, a volatile organic compound (VOC)-producing yeast, demonstrated promising antagonistic activity against aflatoxin-producing strain of Aspergillus flavus. This yeast’s volatile organic compounds (VOCs) could reduce Aflatoxin B1 (AFB1) in corn grains. In the current study, we evaluated the effect of temperatures and relative humidity on AFB1 reduction during grain storage when co-incubated with this VOC-producing yeast. The VOCs produced by K. heveanensis DMKU-CE82 could promote reduction of AFB1 to less than 20 part per billion (ppb) in the fungal contaminated corn grains under most storage conditions at 35 °C. The major VOCs produced by 2-, 4-, and 6-day-old yeast cultures were closely matched to 3-methyl-1-butanol, 2-methyl-1-butanol, hydrazine-1-1-dimethyl, and butanoic acid-3-methyl. In addition, this yeast strain had the ability to produce β-1,3-glucanase, amylase, cellulase, chitinase, siderophores, and biofilms. Scanning electron microscopy also confirmed the antagonistic activity of K. heveanensis DMKU-CE82 as it caused structural damage to conidia and inhibited the development of mycelia and conidiophores in both direct fungal–yeast interaction and the VOC method in corn grains. These results demonstrated that this yeast strain could be a promising biocontrol agent against aflatoxin-producing fungi in agricultural products.

  相似文献   

9.
Terpene volatiles play an important role in the interactions between specialized pathogens and fruits. Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, is associated with crop losses in different citrus‐growing areas worldwide. The pathogen may infect the fruit for 20–24 weeks after petal fall, but the typical hard spot symptoms appear when the fruit have almost reached maturity, caused by fungal colonization and the induction of cell lysis around essential oil cavities. d ‐Limonene represents approximately 95% of the total oil gland content in mature orange fruit. Herein, we investigated whether orange fruit with reduced d ‐limonene content in peel oil glands via an antisense (AS) approach may affect fruit interaction with P. citricarpa relative to empty vector (EV) controls. AS fruit showed enhanced resistance to the fungus relative to EV fruit. Because of the reduced d ‐limonene content, an over‐accumulation of linalool and other monoterpene alcohols was found in AS relative to EV fruit. A global gene expression analysis at 2 h and 8 days after inoculation with P. citricarpa revealed the activation of defence responses in AS fruit via the up‐regulation of different pathogenesis‐related (PR) protein genes, probably as a result of enhanced constitutive accumulation of linalool and other alcohols. When assayed in vitro and in vivo, monoterpene alcohols at the concentrations present in AS fruit showed strong antifungal activity. We show here that terpene engineering in fruit peels could be a promising method for the development of new strategies to obtain resistance to fruit diseases.  相似文献   

10.
The effect of pure and mixed fermentation by Saccharomyces cerevisiae and Hanseniaspora valbyensis on the formation of major volatile components in cider was investigated. When the interaction between yeast strains of S. cerevisiae and H. valbyensis was studied, it was found that the two strains each affected the cell growth of the other upon inoculation of S. cerevisiae during growth of H. valbyensis. The effects of pure and mixed cultures of S. cerevisiae and H. valbyensis on alcohol fermentation and major volatile compound formation in cider were assessed. S. cerevisiae showed a conversion of sugar to alcohol of 11.5%, while H. valbyensis produced alcohol with a conversion not exceeding 6%. Higher concentrations of ethyl acetate and phenethyl acetate were obtained with H. valbyensis, and higher concentrations of isoamyl alcohol and isobutyl were formed by S. cerevisiae. Consequently, a combination of these two yeast species in sequential fermentation was used to increase the concentration of ethyl esters by 7.41–20.96%, and to decrease the alcohol concentration by 25.06–51.38%. Efficient control of the formation of volatile compounds was achieved by adjusting the inoculation time of the two yeasts.  相似文献   

11.
The dependence of the yeast Saccharomyces cerevisiae transformation on energy requirement was studied. The inhibitory effect of sodium arsenate, used for the depletion of the intracellular ATP pool, was determined. Incubation of the yeast cells in 5 mM sodium arsenate diminished ATP accumulation by 50% and the transformation efficiency decreased by 65%. To discriminate between ATP produced by substrate level phosphorylation and oxidative phosphorylation, the inhibitory analysis of a mutant with defective mitochondria was performed. Sodium fluoride (10–50 mM), as inhibitor of glycolysis, elicited a concentration-dependent decrease in intracellular ATP levels in both parental and mutant cells. The equal transformation efficiency of the mitochondrial mutant and parental strain, in addition to experiments with oligomycin, demonstrated the independence of plasmid transformation on mitochondrial ATP synthesis. This is consistent with our hypothesis that yeast transformation efficiency is associated with ATP produced by substrate level phosphorylation.  相似文献   

12.
Specific growth rates (μ) of two strains of Saccharomyces cerevisiae decreased exponentially (R 2>0.9) as the concentrations of acetic acid or lactic acid were increased in minimal media at 30°C. Moreover, the length of the lag phase of each growth curve (h) increased exponentially as increasing concentrations of acetic or lactic acid were added to the media. The minimum inhibitory concentration (MIC) of acetic acid for yeast growth was 0.6% w/v (100 mM) and that of lactic acid was 2.5% w/v (278 mM) for both strains of yeast. However, acetic acid at concentrations as low as 0.05–0.1% w/v and lactic acid at concentrations of 0.2–0.8% w/v begin to stress the yeasts as seen by reduced growth rates and decreased rates of glucose consumption and ethanol production as the concentration of acetic or lactic acid in the media was raised. In the presence of increasing acetic acid, all the glucose in the medium was eventually consumed even though the rates of consumption differed. However, this was not observed in the presence of increasing lactic acid where glucose consumption was extremely protracted even at a concentration of 0.6% w/v (66 mM). A response surface central composite design was used to evaluate the interaction between acetic and lactic acids on the specific growth rate of both yeast strains at 30C. The data were analysed using the General Linear Models (GLM) procedure. From the analysis, the interaction between acetic acid and lactic acid was statistically significant (P≤0.001), i.e., the inhibitory effect of the two acids present together in a medium is highly synergistic. Journal of Industrial Microbiology & Biotechnology (2001) 26, 171–177. Received 06 June 2000/ Accepted in revised form 21 September 2000  相似文献   

13.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol. Project supported by the Guangdong Natural Science Foundation.  相似文献   

14.
The production of volatile organic compounds (VOCs) through the activation of different signal-transduction pathways may be induced in various biotic and abiotic stress situations having importance e.g. in insect and disease resistance. We compared the emission of VOCs emitted from silver birch Betula pendula Roth (clones 4 and 80) twigs damaged either by larvae of Epirrita autumnata, or infected with pathogenic leaf spot causing fungus Marssonina betulae. We also analysed whether local herbivore damage can systemically induce the release of VOCs from the undamaged top of same sapling. The emissions of methylsalicylate (MeSA), (Z)-ocimene, (E)-β-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and linalool were induced from the twigs after 72 h feeding damage by E. autumnata larvae. However, 48 h feeding damage did not induce rapid systemic release of VOCs from undamaged top leaves of the same twigs. Pathogen-infected birch twigs had significantly greater emission of (Z)-ocimene and (E)-β-ocimene than intact control twigs. The emission of DMNT was not significantly induced and MeSA was not found at all after pathogen infection, both being significantly different from herbivore damaged twigs. According to our results leaf fungal pathogen induces VOC emission profile differs from that of arthropod herbivore-damaged leaves, suggesting that birch is able to transmit parasite-specific information via VOC emissions to conspecifics and natural enemies of herbivores. Handling editor: Yvan Rahbé  相似文献   

15.
An unusual Phomopsis sp. was isolated as endophyte of Odontoglossum sp. (Orchidaceae), associated with a cloud forest in Northern Ecuador. This fungus produces a unique mixture of volatile organic compounds (VOCs) including sabinene (a monoterpene with a peppery odor) only previously known from higher plants. In addition, some of the other more abundant VOCs recorded by GC/MS in this organism were 1-butanol, 3-methyl; benzeneethanol; 1-propanol, 2-methyl and 2-propanone. The gases of Phomopsis sp. possess antifungal properties and an artificial mixture of the VOCs mimicked the antibiotic effects of this organism with the greatest bioactivity against a wide range of plant pathogenic test fungi including: Pythium, Phytophthora, Sclerotinia, Rhizoctonia, Fusarium, Botrytis, Verticillium, and Colletotrichum. The IC50 values for the artificial gas mixture of Phomopsis sp. varied between 8 and 25.65 μl/mL. Proton transfer reaction-mass spectrometry monitored the concentration of VOCs emitted by Phomopsis sp. and yielded a total VOC concentration of ca. 18 ppmv in the head space at the seventh day of incubation at 23°C on PDA. As with many VOC-producing endophytes, this Phomopsis sp. did survive and grow in the presence of the inhibitory gases of Muscodor albus. A discussion is presented on the possible involvement of VOC production by the fungus and its role in the biology/ecology of the fungus/plant/environmental relationship.  相似文献   

16.
Buffered charcoal–yeast extract medium (BCYE) has been used for isolation of Xylella fastidiosa from citrus (Citrus sinensis) and coffee (Coffea arabica) plants affected by citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS). BCYE is composed of ACES (2-[2-amino-2oxoethyl) amino]-ethanesulfonic acid) buffer, activated charcoal, yeast extract, L-cysteine, ferric pyrophosphate, and agar. ACES buffer is costly and not always commercially available in Brazil, and the L-cysteine and ferric pyrophosphate need to be filter sterilized in 0.22-μm pore membranes before inclusion in the medium. Omission of L-cysteine, addition of magnesium sulfate, and replacements of ACES and ferric pyrophosphate for potassium phosphate and ferrous sulfate resulted in an effective, less expensive, and entirely autoclavable medium, named phosphate buffered charcoal-yeast extract medium (PCYE). The final cost of PCYE was approximately one tenth that of BCYE. Its effectiveness was tested for the isolation of X. fastidiosa from symptomatic leaves collected from 52 citrus plants affected by CVC and 43 coffee plants affected by CLS. PCYE was as effective as BCYE and has been used routinely in our and other laboratories for isolation, growth, and quantification of X. fastidiosa from plant tissues.  相似文献   

17.
Proliferation of Saccharomyces cerevisiae EPF cells on solid maltose-peptone-yeast extract (MPY) medium was stimulated by the addition of monoamine neurotransmitters. Dopamine turned out to be the most efficient among them: it caused ∼8-fold growth stimulation at 1 μM concentration. The dopamine effect was partly mimicked by apomorphine, a dopamine receptor agonist. Serotonin and histamine produced less significant (1.5–2-fold) effects, and norepinephrine virtually failed to stimulate yeast culture growth. These data point to a specific, apparently receptor-dependent mode of action of the tested neurotransmitters on S. cerevisiae cells. Using high performance liquid chromatography, serotonin, catecholamines (dopamine and norepinephrine), catecholamine precursor dioxyphenylamine, and oxidized amine products (homovanilic acid, dihydrophenylacetic acid, and 5-hydroxyindolacetic acid) were established to be accumulated in yeast cells up to (sub)micromolar concentrations without their release into the culture fluid supernatant (CFS). The results obtained suggest that the tested amine neurotransmitters and related compounds do not serve as autoregulators in the yeast population. Nevertheless, they may be involved in the regulation of yeast population development by other ecosystem components.  相似文献   

18.
A study was performed to determine the effectiveness of using biofiltration for the removal of a complex mixture of volatile organic compounds (VOCs) air-stripped from petroleum hydrocarbons. A biofilter was constructed which contained 264 cm3 of packing material (Celite? R-635). The unit was inoculated with a mixed culture containing a hydrocarbon-degrading Pseudomonas sp and an Alcaligenes sp. Several of the major compounds in the VOC mixture were monitored individually, along with the total VOCs, using gas chromatography. The average influent concentration of the VOC mixture was 320 ppmv and the average total VOC removal rate was over 56%, with the average removal rate of the monitored individual compounds ranging from 49–90%. After 30 days of operation the average overall removal rate was 69% and the removal of the major compounds averaged 92%. The toxicity and mutagenicity of the air stream was monitored using the Microtox and Ames assays, respectively. These data show marked decreases in toxicity and mutagenicity of the air stream as a result of the biofiltration treatment. The biofiltration system, therefore, was not only effective in removing VOCs from the air stream over an extended time-period, but was also effective in greatly reducing the toxicity and mutagenicity associated with the remaining VOCs. Received 03 July 1997/ Accepted in revised form 25 November 1997  相似文献   

19.
Volatile organic compounds, namely, toluene, trichloroethylene, styrene, etc., disposed off by electronics and polymer industries, are very harmful. The treatment of VOC laden air through biochemical route is one of the potential options for reduction of their concentration in parts per million or parts per billion level. Under the present investigation, a 0.05-m diameter and 0.58-m high trickle bed biofilter has been studied for the removal of VOCs namely toluene and trichloroethylene from a simulated air–VOC mixture using pure strain of Pseudomonas putida (NCIM2650) in immobilized form. Inlet concentrations of VOCs have been varied in two ranges, the lower being 0.20–2.00 g/m3 and higher being 10–20 g/m3, respectively. The Monod type rate kinetics of removal of VOCs has been determined. A three-phase deterministic mathematical model has been developed taking the simultaneous reaction kinetics and interphase (gas to liquid to biofilm) mass transfer rate of VOCs into consideration. Experimentally determined kinetic parameters and mass transfer coefficients calculated using standard correlations have been used. Concentrations have been simulated for all the three phases. Simulated results based on the model have been compared with the experimental ones for both gas and liquid phases satisfactorily. The mathematical model validated through the successful comparison with experimental data may be utilized for the prediction of performance of biofilters undergoing removal of different VOCs in any further investigation and may be utilized for the scale-up of the system to industrial scale.  相似文献   

20.
The exchanges of volatile organic compounds (VOCs) between soils and the atmosphere are poorly known. We investigated VOC exchange rates and how they were influenced by soil moisture, temperature and the presence of plant roots in a Mediterranean forest soil. We measured VOC exchange rates along a soil moisture gradient (5%–12.5%–20%–27.5% v/v) and a temperature gradient (10°C–15°C–25°C–35°C) using PTR-MS. Monoterpenes were identified with GC-MS. Soils were a sink rather than a source of VOCs in both soil moisture and temperature treatments (−2.16 ± 0.35 nmol m−2 s−1 and −4.90 ± 1.24 nmol m−2 s−1 respectively). Most compounds observed were oxygenated VOCs like alcohols, aldehydes and ketones and aromatic hydrocarbons. Other volatiles such as acetic acid and ethyl acetate were also observed. All those compounds had very low exchange rates (maximum uptake rates from −0.8 nmol m−2 s−1 to −0.6 nmol m−2 s−1 for methanol and acetic acid). Monoterpene exchange ranged only from −0.004 nmol m−2 s−1 to 0.004 nmol m−2 s−1 and limonene and α-pinene were the most abundant compounds. Increasing soil moisture resulted in higher soil sink activity possibly due to increases in microbial VOCs uptake activity. No general pattern of response was found in the temperature gradient for total VOCs. Roots decreased the emission of many compounds under increasing soil moisture and under increasing soil temperature. While our results showed that emission of some soil VOCs might be enhanced by the increases in soil temperature and that the uptake of most soil VOCs uptake might be reduced by the decreases of soil water availability, the low exchange rates measured indicated that soil-atmosphere VOC exchange in this system are unlikely to play an important role in atmospheric chemistry. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号