首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Arylamines are known bladder carcinogens deriving from tobacco smoke and environmental pollution. Arylamines are metabolised by NAT1 and NAT2 polymorphic enzymes in reactions of carcinogen activation and detoxification. We analysed genetic polymorphisms in both NAT1 and NAT2 genes in 56 bladder cancer patients and 320 healthy patients. Peripheral blood lymphocytes were collected from each subject and genotyped for NAT1 (six alleles) and NAT2 (four alleles) by PCR-RFLP. A weak association between NAT1 and NAT2 genotypes and bladder cancer risk was found when the genotypes were estimated separately (odds ratio OR 1.2, 95%CI 0.7-2.0, and OR 1.3, 95%CI 0.7-1.9, respectively). Almost all NAT1 genotypes possessing at least one "risk" *10 allele were more frequent in the bladder cancer group than in the control group. There was also an increased frequency of "risk" genotypes along with increased cigarette smoking in bladder cancer patients. The coincidence of NAT1-fast/NAT2-slow appears as a potential risk factor for urinary bladder cancer (OR 1.5, 0.8-3.0), as compared with the other genotype combinations.  相似文献   

2.
Single-nucleotide polymorphisms in genes involved in DNA-damage-induced responses are reported frequently to be a risk factor in various cancer types. Here we analysed polymorphisms in 5 genes involved in DNA repair (XPD Asp312Asn and Lys751Gln,XRCC1 Arg399Gln,APE1 Asp148Glu,NBS1 Glu185Gln, andXPA G-4A) and in a gene involved in regulation of the cell-cycle (CCND1 A870G). We compared their frequencies in groups of colon, head and neck, and breast cancer patients, and 2 healthy control groups: (1) matched healthy Polish individuals and (2) a NCBI database control group. Highly significant differences in the distribution of genotypes of theAPE1, XRCC1 andCCND1 genes were found between colon cancer patients and healthy individuals. The 148AspAPE1 allele and the 399GlnXRCC1 allele apparently increased the risk of colon cancer (OR=1.9–2.3 and OR=1.5–2.1, respectively). Additionally, frequencies ofXPD genotypes differed between healthy controls and patients with colon or head and neck cancer. Importantly, no differences in the distribution of these polymorphisms were found between healthy controls and breast cancer patients. The data clearly indicate that the risk of colon cancer is associated with single-nucleotide polymorphism in genes involved in base-excision repair and DNA-damage-induced responses.  相似文献   

3.
The relationship between diet and colorectal cancer has been previously demonstrated and supported with strong epidemiological evidence. The role of genetic polymorphisms has, however, been less well elaborated upon. We conducted a hospital-based case–control study including 727 cases and 736 healthy controls to evaluate the associations of the polymorphic phase-I and -II biotransformations (CYP1A1, CYP1A2, GSTM1, GSTT1, GSTP1, NAT1 and NAT2) and DNA-repair enzymes (XRCC1, XRCC3 and XPD) with the risk of contracting colorectal cancer. We found that men featuring the CYP1A1*2C G/G genotype, the GSTT1 null genotype and XPD 751 with the Gln allele were associated with an elevated risk of colorectal cancer than were men who did not exhibit such genetic features. Multivariate logistic regression analysis revealed that individuals featuring more than two high-risk genotypes increased the colorectal-cancer risk 3.1-fold (OR = 3.1, 95% CI = 1.8–5.2). For women, subjects featuring the CYP1A1*2C G/G genotype and the XRCC3 Thr/Thr genotype faced a 3.1-fold greater risk (95% CI = 1.3–7.0) of colorectal cancer when compared to those featuring the CYP1A1*2C A allele and the XRCC3 Met allele. Taken together, this study suggests that polymorphisms of genes involved in biotransformation and DNA repair could modulate colorectal-cancer risk in Taiwan.  相似文献   

4.
One of the most consistently observed exposure-disease relationship is the one between cigarette smoking and lung cancer. Aromatic amines and their metabolites are found in tobacco smoke and may be a class of carcinogen involved in lung carcinogenesis. T he human N -acetyltransferase 1 ( NAT 1 ) enzyme can activate or deactivate aromatic amines, making it a candidate genetic susceptibility gene. We evaluated the potential role of the NAT 1 gene in lung cancer risk in a hospital-based case-control study in a minority population composed of Mexican- and African-Americans. We also assessed the potential interaction between NAT 1 and other environmental exposures such as cigarette smoking. T here was no overall association between the NAT1*10 genotypes and lung cancer risk. T he adjusted odds ratio for the rapid acetylation genotypes was 0 72 (95 % CI 0 37-1 39) for NAT1 defined as the presence of at least one copy of the NAT1*10 allele when compared with all genotypes without the NAT1*10 allele. Analyses by histological subtype or smoking history did not alter these findings. Other NAT 1 alleles will need to be studied for more conclusive results regarding the relevance of NAT 1 activity to lung carcinogenesis.  相似文献   

5.
The arylamine N-acetyltransferase 2 (NAT2) enzymes detoxify a wide range of naturally occurring xenobiotics including carcinogens and drugs. Point mutations in the NAT2 gene result in the variant alleles M1 (NAT2 *5A), M2 (NAT2*6A), M3 (NAT2*7) and M4 (NAT2 *14A) from the wild-type WT (NAT2 *4) allele. The current study was aimed at screening genetic polymorphisms of NAT2 gene in 49 lung cancer patients, 54 colorectal cancer patients and 99 cancer-free controls, using PCR-RFLP. There were significant differences in allele frequencies between lung cancer patients and controls in the WT, M2 and M3 alleles (p < 0.05). However, only M2 and M3 allele frequencies were different between colorectal cancer patients and controls (p < 0.05). There was a marginal significant difference in the distribution of rapid and slow acetylator genotypes between lung cancer patients and controls (p = 0.06 and p = 0.05, respectively), but not between colorectal cancer patients and controls (p = 1.0 and p = 0.95, respectively). Risk of lung cancer development was found to be lower in slow acetylators [odds ratio (OR): 0.51, 95% confidence interval (95% CI): 0.25, 1.02, p-value = 0.07]. No effect was observed in case of colorectal cancer. Our results showed that NAT2 genotypes and phenotypes might be involved in lung cancer but not colorectal cancer susceptibility in Jordan.  相似文献   

6.
Polymorphisms in the selected genes controlling carcinogen metabolism (CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1, GSTT1) considered separately or in different combinations, were investigated for an association with tobacco smoke-associated squamous cell carcinoma (SCC) of the larynx. The case-control study was performed in 289 patients with laryngeal SCC and in 316 cancer-free controls; all were Caucasian males from the same region of Poland and current tobacco smokers. The DNA samples were genotyped using PCR-RFLP and multiplex PCR. The variants' frequencies in both groups were compared; odds ratios and their 95% confidence intervals were calculated by logistic regression analyses. The CYP1A1*1/*4, CYP2D6*4/*4, NAT2*4/*6A genotypes, as well as the CYP1A1*4, CYP2D6*4 and NAT2*4 alleles, were found at significantly higher frequencies in cases than in controls indicating their role as "risk-elevating" factors in laryngeal SCC. Combined genotypes, characterized by the presence of the "risk-elevating" variants at more than one locus, often occurred together with the null variant of the GSTM1 gene and homozygous XPD A/A (Lys751Gln, A35931C) genotype. Furthermore, we identified some "protective" variants, found more frequently in controls than in cases, i.e. the NAT2*6A/*6A and NAT2*5B/*6A genotypes. A distribution of "risk" or "protection" genotypes/alleles seems to be connected with age as an occurrence or risk genes was more frequent in the group of "young" cases (< or = 49 years). Accumulation of certain alleles or genotypes of the CYP1A1, NAT2, GSTM1 and XPD seems to be associated with either increased or decreased risk to develop laryngeal SCC. Therefore, polymorphisms in these genes may play a role in the laryngeal cancer etiology.  相似文献   

7.
The purpose of this study was to investigate the relationship between head and neck cancer (HNC) and environmental agents and polymorphisms in CYP1A1, CYP2D6, NAT1 and NAT2 metabolic enzymes genes. To the best of our knowledge, this is the first report on polymorphisms in CYP1A1 6310C>T, CYP2D6 Arg365His, NAT1 52936A>T and NAT2 Arg268Lys (NAT2*12A) genes and susceptibility to HNC in Tunisian population. We study the prevalence of these polymorphisms in 169 patients with HNC and 261 control subjects using polymerase chain reaction based methods in a Tunisian population. We detected an association between HNC and CYP1A1 6310C>T (TT) and CYP2D6 Arg365His (His/His) variant carriers (OR 1.75, P = 0.008 and OR 1.66, P = 0.016, respectively). No association was found between the polymorphisms genotypes of NAT1 52936T>A and NAT2 Arg268Lys and risk of HNC. An association between HNC and CYP1A1 (TT) genotype was found among patients with smoking (P = 0.011) and drinking habit (P = 0.009). The combinations of NAT1 (AT or AA) and NAT2 (AA) at-risk genotypes increased HNC risk (OR 4.23, P = 0.005 and OR 3.60, P = 0.048, respectively). However, the combinations of CYP1A1 (AA) and CYP2D6 (CC) genotypes decreased risk of HNC (OR 0.20; P = 0.006). Genetic polymorphisms in CYP1A1 and CYP2D6 may significantly associate with HNC in the Tunisian population. The results of this study suggest a possible gene–environment interaction for certain carcinogen metabolizing enzymes, but larger studies that fully evaluate the interaction are needed.  相似文献   

8.
Interethnic differences in the allele frequencies of CYP2D6, NAT2, GSTM1 and GSTT1 deletions have been documented for Caucasians, Asians, and Africans population. On the other hand, data on Amerindians are scanty and limited to a few populations from southern areas of South America. In this report we analyze the frequencies of 11 allele variants of CYP2D6 and 4 allele variants of NAT2 genes, and the frequency of GSTM1 and GSTT1 homozygous deleted genotypes in a sample of 90 donors representing 8 Native American populations from Argentina and Paraguay, identified as Amerindians on the basis of their geographic location, genealogical data, mitochondrial- and Y-chromosome DNA markers. For CYP2D6, 88.6% of the total allele frequency corresponded to *1, *2, *4 and *10 variants. Average frequencies for NAT2 *4, *5, *6 and *7 alleles were 51.2%, 25%, 6.1%, and 20.1%, respectively. GSTM1 deletion ranged from 20% to 66%, while GSTT1 deletion was present in four populations in less than 50%. We assume that CYP2D6 *2, *4, *10, *14; NAT2 *5, *7 alleles and GSTM1 and GSTT1 *0/*0 genotypes are founder variants brought to America by the first Asian settlers.  相似文献   

9.
This case–control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42–355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

10.
Genetic variations in xenobiotic metabolizing genes can influence susceptibility to many environmentally induced cancers. Inheritance of the N-acetyltransferase 1 allele (NAT1*10), linked with increased metabolic activation of pro-carcinogens, is associated with an increased susceptibility to many cancers in which cigarette- or meat-derived carcinogens have been implicated in their etiology. The role of NAT1*10 in prostate cancer is under studied. Although cigarette smoking is not considered a risk factor for prostate cancer, a recent review suggests it may play a role in disease progression. Consequently, we examined the association of NAT1*10 with prostate cancer risk, grade, and stage among 400 Finnish male smokers using a case-control study design. Following genotyping of 206 patients and 196 healthy controls, our results do not support the role of NAT1*10 in relation to prostate cancer risk (OR?=?1.28; 95% CI, 0.66-2.47), aggressive disease (OR?=?0.58; 95% CI, 0.13-2.67), or advanced disease (OR?=?1.19; 95% CI, 0.49-2.91).  相似文献   

11.
Gu J  Liang D  Wang Y  Lu C  Wu X 《Mutation research》2005,581(1-2):97-104
Cigarette smoking is the predominant risk factor for bladder cancer (BC). Major carcinogens present in tobacco smoke include a number of aromatic and heterocyclic amines. Two distinct N-acetyl transferase (NAT) enzymes, NAT1 and NAT2, play important roles in the bio-activation and detoxification of these carcinogens. Genes encoding NAT1 and NAT2 are highly polymorphic among human populations, and these polymorphisms result in rapid or slow acetylator phenotypes. Recent studies have suggested that variant alleles leading to slow acetylation by the NAT2 enzyme or rapid acetylation by the NAT1 enzyme constitute possible risk factors for bladder cancer. In this case-control study, we sought to determine whether NAT1 and NAT2 polymorphisms are associated with bladder cancer risk in the largest sample size to date. PCR-RFLP assay was used to determine the presence of NAT1 and NAT2 polymorphisms in 507 Caucasian BC patients and 513 age-, gender-, and ethnicity-matched healthy controls. Overall, we found no significant association between BC risk and NAT1 NAT1*10 allele (OR=0.95; 95% CI 0.73-1.25). However, our data suggested that NAT2 slow acetylator genotypes were associated with a significant increased risk of BC (OR=1.31; 95% CI, 1.01-1.70). This elevated risk appeared more evident in older individuals (OR=1.41; 95% CI, 1.01-1.98) than in younger individuals (OR=1.15; 95% CI, 0.76-1.74). Moreover, the risk was greater for heavy smokers (OR=2.11; 95% CI, 1.33-3.35) than light smokers (OR=0.96; 95% CI, 0.61-1.53) and never smokers (OR=1.23; 95% CI, 0.79-1.90). Finally, a joint effect between NAT2 slow acetylators and heavy smokers was observed. Using never smokers with NAT2 rapid acetylator genotypes as a reference group, heavy smokers with NAT2 slow acetylator genotypes showed an over six-fold increase in BC risk. In a multiplicative interaction model, the interaction term was statistically significant (P=0.02). Our data suggest that having a NAT2 slow acetylator genotype is a significant risk factor for BC, particularly in smokers and older individuals.  相似文献   

12.
There has been an explosion in population studies determining the frequency of KIR genes. However, there is still limited knowledge of allele and haplotype frequencies in different populations. The present study aims to determine the haplotype frequencies using allele information on ten genes and presence/absence of the other seven genes in the parents of 77 families. There were 26 of 154 different genotypes without using allele information and 143 of 154 different genotypes using allele information. These genotypes came from 96 of 308 different haplotypes. Of these, 41 were A and 55 were B. Forty-nine haplotypes occurred only once. In total, 181 (58.8%) of haplotypes were A and 127 (41.2%) were B. Three different haplotypes carried two copies of KIR2DL4, two different haplotypes were truncated with both KIR2DL4 and KIR3DL1/S1 missing, and three different haplotypes were negative for both KIR2DL2 and KIR2DL3; two of these haplotypes carried KIR2DS2. A further haplotype, present in two individuals, appeared to have two alleles of KIR2DL5A present. The percentages of individuals who were homozygous for the A haplotype, heterozygous for the A and B haplotype and homozygous for the B haplotype were 35.1%, 47.4% and 17.5% respectively. The genes KIR3DL1, KIR2DS4 and KIR2DL3 were present on 31, 32 and 15 different B haplotypes, respectively, and 64, 65 and 40 of the total B haplotypes, respectively. Sixty B haplotypes had both KIR3DL1 and KIR2DS4, and four haplotypes had KIR2DS4 and KIR2DL3. However, in 40 of 41 different and 180 of 181 total A haplotypes, KIR3DL1, KIR2DS4 and KIR2DL3 were all present (we did not allele-type for KIR2DL1 and therefore could not determine presence/absence on those haplotypes). At the allele level, homozygosity was found in 22.1%, 9.7% and 12.6% for KIR2DL4, KIR3DL2 and KIR3DL1 genes, respectively, but 62.6% and 53% for KIR2DL3 and KIR2DS4 genes, respectively, despite the fact that no one allele dominated the frequency in any of these genes.  相似文献   

13.
Cancer reflects a complicated network of interactions between genes and environmental factors. Cytochrome P450 (CYP) is a multi-gene superfamily participating in the metabolism of xenobiotics. The aim of our study was to examine whether polymorphisms in the CYP enzyme genes affect the risk of developing larynx squamous cell carcinoma (SCC). Polymorphism of CYP3A5 and CYP3A4 genes were investigated in 50 patients with laryngeal SCC and 100 control subjects by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). In patients the CYP3A5 3*/3* and 1*/3*genotypes were detected in 92% and 8% respectively. There was no relation between genotype, allele frequency and grade/stage of tumor. In control group, the frequency of CYP3A5 3*/3* and CYP3A5 1*/3* genotype were 98% and 2% respectively. There was no significant difference in genotype and allele frequency of this gene between patient and control group. In respect of CYP3A41A*/B*, people in both patient and control groups had the same genotype of CYP3A41A*/1A*. In this study, the CYP gene variants were not associated with increased risk of laryngeal SCC. Study on the other genetic factors which are involved in activation/detoxication of procarcinogenes, such as CYP1A1, CYP1B1, CYP2E1 and gluthation S transferase is recommended.  相似文献   

14.
In the present study, the possible role of genetic polymorphism of three drug-metabolizing enzymes, debrisoquine/sparteine hydroxylase (CYP2D6), glutathione S-transferase μ (GSTM1), and N-acetyltransferase (NAT2), as a putative genetic component of human longevity, was explored. A total of 817 DNA samples from a centenarian and a control (20–70 years) population was subjected to PCR-coupled RFLP methods. Subjects were genotyped for the CYP2D6*3 (A2637 deletion) and CYP2D6*4 (G1934A transition) alleles, for four mutations of NAT2 [namely, NAT2*5A (C481T), NAT2*6A (G590A), NAT2*7A (G857A), and NAT2*14A (G191A)], and for the presence or absence of GSTM1 gene deletion. No significant difference was found at these three loci between centenarian and control subjects with respect to allelic variant frequencies, genotype distributions or predicted phenotypes deduced from genotype combinations. By comparing the distribution of combined genotypes for the polymorphisms tested at the CYP2D6, NAT2, and GSTM1 loci, none of the predicted phenotypes concerning debrisoquine hydroxylase extensive-metabolizer or poor-metabolizer phenotypes, slow or fast N-acetylation capacities, and active or defective glutathione S-transferase, could be correlated with human longevity, alone or in combination. Received: 4 September 1997/Accepted: 13 December 1997  相似文献   

15.
Background: CYP1A1 is one of the commonest genes which had been widely investigated to find the risk of various malignancies in different ethnic groups. The polymorphism in these genes with a combination of environmental exposure has been hypothesized to confer a differential risk of cancer for individuals carrying these genetic variants. Based on this model, individuals with higher CYP1A1 activity would be at increased risk of cancer when exposed to high levels of smoke components. The proposed mechanism involves cytochrome P450 1A1 (CYP1A1), a gene that is inducible by xenobiotics to produce genetic susceptibility for malignancies. Patients and procedures: We performed a case–control study in 205 cases with histopathologically confirmed squamous cell carcinoma of head and neck and reported habits of bidi or cigarettes smoking and 245 similar controls to investigate the role of CYP1A1 polymorphisms in the risk of head and neck cancers especially among smokers of Hyderabad Indian population. Venous blood samples (5 ml) were collected from patients and control groups; genomic DNA was extracted and used for polymerase chain reaction (PCR) to determine the genotypes. RFLP assays were designed to detect each of the variant CYP1A1 alleles. Results and discussion: CYP1A1m1/m1 genotype (OR = 8.12, 95% CI: 3.27–21.30) and CYP1A1w1/m1 showed elevated risk when compared with CYP1A1w1/w1. Similarly CYP1A1w2/m2 (OR = 1.58, 95% CI: 0.94–2.67) and CYP1A1m2/m2 (OR = 6.31, 95% CI: 2.74–18.69) genotypes also showed elevated risk when compared with CYP1A1w2/w2 genotype. This data demonstrated that smoking was a risk factor for head and neck cancers. The m2 mutations were in close linkage disequilibrium with the m1 mutations; 53% m1 mutants had the mutation in the m2 site. Conclusion: Those individuals carrying at least one CYP1A1 m1 or m2 variant allele were at a 2-fold elevated risk for head and neck cancer. Our data clearly demonstrates that CYP1A1 is an important determinant in susceptibility to tobacco-induced head and neck carcinogens and there is an association between genetic polymorphism in the CYP1A1 locus and elevated risk of the type of smoking among Indians. This appears to be a new and important prognostic and diagnostic marker for determining the risk of head and neck cancers genetically.  相似文献   

16.
The N-acetylation polymorphisms of volunteers from the Moscow population analyzed by phenotyping and genotyping have been compared. The ratios between the proportions of fast acetylators (FAs) and slow acetylators (SAs) estimated by phenotyping and genotyping do not differ significantly from each other (47 and 44%, respectively). The absolute acetylation rate widely varies in both FAs and SAs. The NAT2 genotype and allele frequencies in the population sample have been calculated. The most frequent alleles are NAT2*4 (a “fast” allele), NAT2*5, and NAT2*6 (“slow” alleles); the most frequent genotypes are NAT2*5/*5, NAT2*4/*6, and NAT2*4/*5. Comparative analysis of N-acetylation polymorphism estimated by phenotyping and genotyping in the same subjects has shown a complete concordance between the phenotype and genotype in only 62 out of 75 subjects (87%). Comparative characteristics and presumed applications of the two approaches (quantitative estimation of acetylation rate and qualitative determination of the acetylator genotype) to the identification of individual acetylation status are presented.  相似文献   

17.
Objectives: The incidence of endometrial cancer has recently increased substantially and studies have shown that altered levels of exogenous and endogenous hormones are associated with individual variation in endometrial cancer risk. The environmental and reproductive risk factors that influence these hormones are well known, however, genetic variants involved in hormone biosynthesis and estrogen metabolism have not been well established in endometrial cancer. Methods: To determine whether polymorphisms in genes of the steroid hormone biosynthesis and metabolism pathways are associated with endometrial cancer risk, 28 polymorphisms in 18 genes were genotyped in 191 endometrial cancer cases and 291 healthy controls. Results: The GSTM1 deletion and the variant (GG) genotype of the CYP1B1 rs1800440 polymorphism were associated with a decreased risk of developing endometrial cancer. Furthermore, combinations of haplotypes in CYP1A1, CYP1B1 and GSTs were associated with a decreased risk. The analysis of the repeat polymorphisms revealed that women with the long repeat allele length of the ESR1 (GT)n repeat polymorphism were at an increased risk of developing endometrial cancer. Conversely, women with two long repeat length alleles of the (CAG)n repeat polymorphism in the AR correlated with a decrease in endometrial cancer risk compared to women with one or two alleles with the short repeat length. Conclusions: The findings are consistent with our hypothesis that variability in genes involved in steroidogenesis and estrogen metabolism may alter the risk of developing endometrial cancer, suggesting that they may be useful as biomarkers for genetic susceptibility to endometrial cancer.  相似文献   

18.
《Biomarkers》2013,18(5):379-399
Background: Polymorphisms in DNA repair genes have been reported contributing factors in head and neck cancer risk but studies have shown conflicting results.

Objective: To clarify the impact of DNA repair gene polymorphisms in head and neck cancer risk.

Method: A meta-analysis including 30 case–control studies was performed.

Results: Marginally statistically significant association was found for XRCC1 codon 399 (for Caucasians only), XPD Asp312Asn and XRCC1 codon 194 variants and head and neck cancer.

Conclusion: Assessments of the effects of smoking, alcohol, human papillomavirus and race/ethnicity on the association between DNA repair gene polymorphisms and head and neck cancer are needed.  相似文献   

19.
Attempts were made in the present case-control study to investigate the association of polymorphism in the genes encoding proteins involved in toxication–detoxication and dopaminergic pathways and susceptibility to Parkinson’s disease (PD). Seventy patients suffering from PD and one hundred healthy controls belonging to the same geographical location and same ethnicity were included in the study. PCR-RFLP and allele-specific PCR-based methodology were used to identify the genotypes. Multivariate logistic regression analysis revealed that heterozygous genotypes of cytochrome P4502D6*4(CYP2D6*4), CYP2E1*5B (RsaI) polymorphism and homozygous mutant genotypes of CYP2E1*6 (Dra1) were found to be overrepresented in PD cases when compared to the controls. Risk was also found to be increased in patients carrying glutathione S-transferase T1 (GSTT1) null or homozygous variant genotypes of GSTP1. Significant association was observed for monoamine oxidase-B(MAO-B) variant allele G and PD, whereas no difference in genotype and allele frequencies was observed for manganese-superoxide dismutase (MnSOD), dopamine receptor-D2(DRD2), and dopamine transporter (DAT) genes between controls and PD cases. Genotype combinations characterized by the presence of two variant genotypes on their corresponding loci revealed that four combinations of GSTT1 null and MnSOD(-9Val) or GST null and MAOB-G or CYP2E1*5B and MAO-B-AG or CYP2E1*5B and DRD2 (Taq1A-het) genotypes in the patients exhibited severalfold higher and significant association with risk to PD. Our data suggest that polymorphism in the genes involved in detoxification and dopamine regulation may modulate the susceptibility to PD and could be important risk factors in the pathogenesis of PD.  相似文献   

20.
The NAT2 genetic polymorphism determines the individual acetylator status and, consequently, the capacity to metabolize, or not, drugs and xenobiotics which are substrates of NAT2. As the nature and frequency of the NAT2 polymorphisms vary remarkably between populations of different ethnic origins, genotyping strategies used to predict the acetylation phenotype need to be adapted for each particular population regarding their genetic backgrounds at this locus. As few data on the genetic polymorphism of NAT2 are available in the Senegalese population, we performed an extensive identification of NAT2 variants in 105 healthy non-smoker Senegalese subjects by direct PCR sequencing of the coding region. Eleven previously described SNPs were identified in this Senegalese population. Upon allele analysis, the four most frequent alleles were of the NAT2*5- (35.7?%), NAT2*6- (21.0?%), NAT2*12- (16.7?%) and NAT2*14- (10.0?%) type, the remaining alleles, including the wild-type NAT2*4, having each a frequency lower than 10?%. According to the observed genotypes, 51 and 50 subjects were predicted to be of the rapid (48.6?%) and slow (47.6?%) acetylator phenotype, respectively, while four individuals (3.8?%) were considered of unknown phenotype as they carry at least one allele with a yet unknown functional effect. These baseline data would be of particular interest to set up an efficient genotyping strategy to predict the acetylation status of Senegalese patients with tuberculosis and, thus, to optimize their isoniazid treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号