首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

4.
5.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

6.
7.
The shoot apical meristem of higher plants consists of a population of stem cells at the tip of the plant body that continuously gives rise to organs such as leaves and flowers. Cells that leave the meristem differentiate and must be replaced to maintain the integrity of the meristem. The balance between differentiation and maintenance is governed both by the environment and the developmental status of the plant. In order to respond to these different stimuli, the meristem has to be plastic thus ensuring the stereotypic shape of the plant body. Meristem plasticity requires the ZWILLE (ZLL) gene. In zll mutant embryos, the apical cells are misspecified causing a variability of the meristems size and function. Using specific antibodies against ZLL, we show that the zll phenotype is due to the complete absence of the ZLL protein. In immunohistochemical experiments we confirm the observation that ZLL is solely localized in vascular tissue. For a better understanding of the role of ZLL in meristem stability, we analysed the genetic interactions of ZLL with WUSCHEL (WUS) and the CLAVATA1, 2 and 3 (CLV) genes that are involved in size regulation of the meristem. In a zll loss-of-function background wus has a negative effect whereas clv mutations have a positive effect on meristem size. We propose that ZLL buffers meristem stability non-cell-autonomously by ensuring the critical number of apical cells required for proper meristem function.Edited by G. JürgensAn erratum to this article can be found at  相似文献   

8.
Ascophyllum nodosum, a brown macroalga, is the most widely used seaweed in agriculture. We report a rapid method for the detection of cytokinin-like activity in plants treated with a commercial A. nodosum liquid concentrate (Stimplex®) using a transgenic line of Arabidopsis carrying the ARR5 promoter fused to ß-glucuronidase (GUS) reporter gene. Based on GUS activity assay, an increase in cytokinin-like activity was detected in plants grown in vitro treated with 3 mL L?1 Stimplex®, whereas foliar spray treatments showed similar cytokinin-like activity at a concentration of 5 mL L?1. Histochemical staining showed Stimplex®-induced GUS activity in leaf as well as in the root tissues. Taken together, our results suggest that Stimplex® contains compounds that may elicit endogenous cytokinin-like activity. Furthermore, it is shown that this bioassay can be used for rapid screening of extracts that can stimulate cytokinin-like activities using Arabidopsis AAR5::GUS reporter transgenic plants.  相似文献   

9.
10.
Birschwilks M  Sauer N  Scheel D  Neumann S 《Planta》2007,226(5):1231-1241
Arabidopsis thaliana and Cuscuta spec. represent a compatible host–parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host–parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP–ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP–ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP–ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.  相似文献   

11.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

12.
13.
14.
Wang H  Liang Q  Cao K  Ge X 《Planta》2011,233(6):1287-1292
Protein mono-ADP-ribosylation post-translationally transfers the ADP-ribose moiety from the β-NAD+ donor to various protein acceptors. This type of modification has been widely characterized and shown to regulate protein activities in animals, yeast and prokaryotes, but has never been reported in plants. In this study, using [32P]NAD+ as the substrate, ADP-ribosylated proteins in Arabidopsis were investigated. One protein substrate of 32 kDa in adult rosette leaves was found to be radiolabeled. Heat treatment, protease sensitivity and nucleotide derivative competition assays suggested a covalent reaction of NAD+ with the 32 kDa protein. [carbonyl-14C]NAD+ could not label the 32 kDa protein, confirming that the modification was ADP-ribosylation. Poly (ADP-ribose) polymerase inhibitor failed to suppress the reaction, but chemicals that destroy mono-ADP-ribosylation on specific amino acid residues could break up the linkage, suggesting that the reaction was not a poly-ADP-ribosylation but rather a mono-ADP-ribosylation. This modification mainly existed in leaves and was enhanced by oxidative stresses. In young seedlings, two more protein substrates with the size of 45 kDa and over 130 kDa, respectively, were observed in addition to the 32 kDa protein, indicating that different proteins were modified at different developmental stages. Although the substrate proteins remain to be identified, this is the first report on the characterization of endogenously mono-ADP-ribosylated proteins in plants.  相似文献   

15.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

16.
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana.  相似文献   

17.
Histidine triad nucleotide-binding protein 1 (HINT1) is highly conserved in many species and plays important roles in various biological processes. However, little is known about the responses of HINT1 to abiotic stress in plants. Salt and drought stress are major limiting factors for plant growth and development, and their negative effects on crop productivity may threaten the world’s food supply. Previously, we identified a maize gene, Zm-HINT1, which encodes a 138-amino-acid protein containing conserved domains including the HIT motif, helical regions, and β-strands. Here, we demonstrate that overexpression of Zm-HINT1 in Arabidopsis confers salt and drought tolerance to plants. Zm-HINT1 significantly regulated Na+ and K+ accumulation in plants under salt stress. The improve tolerance characteristics of Arabidopsis plants that were overexpressing Zm-HINT1 led to increased survival rates after salt and drought treatments. Compared with control plants, those plants that overexpressed Zm-HINT1 showed increased proline content and superoxide dismutase activity, as well as lower malondialdehyde and hydrogen peroxide accumulation under salt and drought treatments. The expression patterns of stress-responsive genes in Arabidopsis plants that overexpressed Zm-HINT1 significantly differed from those in control lines. Taken together, these results suggest that Zm-HINT1 has potential applications in breeding and genetic engineering strategies that are designed to produce new crop varieties with improved salt and drought tolerance.  相似文献   

18.
19.
We conducted a novel non-visual screen for cuticular wax mutants in Arabidopsis thaliana (L.) Heynh. Using gas chromatography we screened over 1,200 ethyl methane sulfonate (EMS)-mutagenized lines for alterations in the major A. thaliana wild-type stem cuticular chemicals. Five lines showed distinct differences from the wild type and were further analyzed by gas chromatography and scanning electron microscopy. The five mutants were mapped to specific chromosome locations and tested for allelism with other wax mutant loci mapping to the same region. Toward this end, the mapping of the cuticular wax (cer) mutants cer10 to cer20 was conducted to allow more efficient allelism tests with newly identified lines. From these five lines, we have identified three mutants defining novel genes that have been designated CER22, CER23, and CER24. Detailed stem and leaf chemistry has allowed us to place these novel mutants in specific steps of the cuticular wax biosynthetic pathway and to make hypotheses about the function of their gene products.Abbreviations EMS Ethyl methane sulfonate - SEM Scanning electron microscopy - SSLP Simple sequence length polymorphism - WT Wild type  相似文献   

20.
Arabidopsis ACT2 represents an ancient class of vegetative plant actins and is strongly and constitutively expressed in almost all Arabidopsis sporophyte vegetative tissues. Using the beta glucuronidase report system, the studies showed that ACT2 5′ regulatory region was significantly more active than CaMV 35S promoter in Arabidopsis seedlings and gametophyte vegetative tissues of Physcomitrella patens. Its activity was also observed in rice and maize seedlings. Thus, the ACT2 5′ regulatory region could potentially serve as a strong regulator to express a transgene in divergent plant species. ACT2 5′ regulatory region contained 15 conserved sequence elements, an ancient intron in its 5′ un-translated region (5′ UTR), and a purine-rich stretch followed by a pyrimidine-rich stretch (PuPy). Mutagenesis and deletion analysis illustrated that some of the conserved sequence elements and the region containing PuPy sequences played regulatory roles in Arabidopsis. Interestingly, mutation of the conserved elements did not lead a dramatic change in the activity of ACT2 5′ regulatory region. The ancient intron in ACT2 5′ UTR was required for its strong expression in both Arabidopsis and P. patens, but did not fully function as a canonical intron. Thus, it was likely that some of the conserved sequence elements and gene structures had been preserved in ACT2 5′ regulatory region over the course of land plant evolution partly due to their functional importance. The studies provided additional evidences that identification of evolutionarily conserved features in non-coding region might be used as an efficient strategy to predict gene regulatory elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号