首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The secretion of insulin by the pancreatic B-cell involves a passage of the newly synthetized (pro)insulin polypeptides across the Golgi apparatus, at the trans pole of which secretory proteins are released as a population of secretory granules characterized by a clathrinlike coat on segments of their limiting membrane. When the conversion of radiolabeled proinsulin to insulin was inhibited by replacing arginine and lysine with the aminoacid analogs, canavanine and thialysine, the nonconverted radioactive material remained associated with Golgi-derived, coated secretory granules. The coat was characterized as clathrin-containing by immunocytochemistry. Under analog treatment, the noncoated, storage secretory granules did not become markedly labeled during the pulse-chase experiment. These data are compatible with the hypothesis that in normal conditions, the maturation of the coated compartment into noncoated granules is linked to the effective conversion of the prohormone.  相似文献   

2.
The direct identification of the intracellular site where proinsulin is proteolytically processed into insulin has been achieved by immunocytochemistry using an insulin-specific monoclonal antibody. Insulin immunoreactivity is absent from the Golgi stack of pancreatic B-cells and first becomes detectable in clathrin-coated secretory vesicles released from the trans Golgi pole. Clathrin-coated secretory vesicles transform into mature noncoated secretory granules which contain the highest concentration of insulin immunoreactive sites. Maturation of clathrin-coated secretory vesicles is accompanied by a progressive acidification of the vesicular milieu, as evidenced by a cytochemical probe that accumulates in acidic compartments whereupon it can be revealed by immunocytochemistry. Thus packaging of the prohormone in secretory vesicles, and acidification of this compartment, are critical steps in the proper proteolytic maturation of insulin.  相似文献   

3.
We have studied by electron microscopy and immunocytochemistry the formation of secretory granules containing adrenocorticotropic hormone (ACTH) in murine pituitary cells of the AtT20 line. The first compartment in which condensed secretory protein appears is a complex reticular network at the extreme trans side of the Golgi stacks beyond the TPPase-positive cisternae. Condensed secretory protein accumulates in dilated regions of this trans Golgi network. Examination of en face and serial sections revealed that "condensing vacuoles" are in fact dilations of the trans Golgi network and not detached vacuoles. Only after presumptive secretory granules have reached an advanced stage of morphological maturation do they detach from the trans Golgi network. Frequently both the dilations of the trans Golgi network containing condensing secretory protein and the detached immature granules in the peri-Golgi region have surface coats which were identified as clathrin by immunocytochemistry. Moreover both are the site of budding (or fusion) of coated vesicles, some of which contain condensed secretory protein. The mature granules below the plasma membrane do not, however, have surface coats. Immunoperoxidase labeling with an antiserum specific for ACTH and its precursor polypeptide confirmed that many of the coated vesicles associated with the trans Golgi network contain ACTH. The involvement of the trans Golgi network and coated vesicles in the formation of secretory granules is discussed.  相似文献   

4.
The trans-Golgi network (TGN) plays a pivotal role in directing proteins in the secretory pathway to the appropriate cellular destination. VAMP4, a recently discovered member of the vesicle-associated membrane protein (VAMP) family of trafficking proteins, has been suggested to play a role in mediating TGN trafficking. To better understand the function of VAMP4, we examined its precise subcellular distribution. Indirect immunofluorescence and electron microscopy revealed that the majority of VAMP4 localized to tubular and vesicular membranes of the TGN, which were in part coated with clathrin. In these compartments, VAMP4 was found to colocalize with the putative TGN-trafficking protein syntaxin 6. Additional labeling was also present on clathrin-coated and noncoated vesicles, on endosomes and the medial and trans side of the Golgi complex, as well as on immature secretory granules in PC12 cells. Immunoprecipitation of VAMP4 from rat brain detergent extracts revealed that VAMP4 exists in a complex containing syntaxin 6. Converging lines of evidence implicate a role for VAMP4 in TGN-to-endosome transport.  相似文献   

5.
ECL cells are numerous in the rat stomach. They produce and store histamine and chromogranin-A (CGA)-derived peptides such as pancreastatin and respond to gastrin with secretion of these products. Numerous electron-lucent vesicles of varying size and a few small, dense-cored granules are found in the cytoplasm. Using confocal and electron microscopy, we examined these organelles and their metamorphosis as they underwent intracellular transport from the Golgi area to the cell periphery. ECL-cell histamine was found to occur in both cytosol and secretory vesicles. Histidine decarboxylase, the histamine-forming enzyme, was in the cytosol, while pancreastatin (and possibly other peptide products) was confined to the dense cores of granules and secretory vesicles. Dense-cored granules and small, clear microvesicles were more numerous in the Golgi area than in the docking zone, i.e. close to the plasma membrane. Secretory vesicles were numerous in both Golgi area and docking zone, where they were sometimes seen to be attached to the plasma membrane. Upon acute gastrin stimulation, histamine was mobilized and the compartment size (volume density) of secretory vesicles in the docking zone was decreased, while the compartment size of microvesicles was increased. Based on these findings, we propose the following life cycle of secretory organelles in ECL cells: small, electron-lucent microvesicles (pro-granules) bud off the trans Golgi network, carrying proteins and secretory peptide precursors (such as CGA and an anticipated prohormone). They are transformed into dense-cored granules (approximate profile diameter 100 nm) while still in the trans Golgi area. Pro-granules and granules accumulate histamine, which leads to their metamorphosis into dense-cored secretory vesicles. In the Golgi area the secretory vesicles have an approximate profile diameter of 150 nm. By the time they reach their destination in the docking zone, their profile diameter is between 200 and 500 nm. Exocytosis is coupled with endocytosis (membrane retrieval), and microvesicles in the docking zone are likely to represent membrane retrieval vesicles (endocytotic vesicles).  相似文献   

6.
The secretory activity of parathyroid glands in rats was stimulated by decreasing the serum Ca++ concentration through constant intravenous infusion of EGTA. The morphometric analysis of the nuclear and cytoplasmic volume and of the surface area of the rough endoplasmic reticulum, Golgi complex, secretory granules and plasma membrane revealed a membrane shift from secretory granules and Golgi complex to the plasma membrane within 1 hr of calcium depression. Subsequently, between 1 and 3 hr of calcium depression, the membrane shift was from the plasma membrane to the Golgi complex. It is considered likely that these membrane shifts are related to a rise in release of parathyroid hormone by exocytosis and a subsequent increase in retrieval of plasma membrane by endocytosis—probably through the compartment of coated pits and coated and uncoated vesicles.  相似文献   

7.
    
Summary The effect of monensin on the Golgi complex, formation of secretory granules and basal -endorphin secretion in cultured melanotrophs from the rat pituitary was studied. Earlier studies on the effect of monensin on regulated secretion have generally showed only minor effects on secretory granules. The initial (within 5 min) effect of monensin on the melanotroph was the appearance of large vacuoles at the trans-side of the thiamine pyrophosphatase-positive trans-most Golgi cisternae. This was associated with a dose-dependent inhibition of the condensation of electron-dense secretory products. After 1 h of treatment with 1 M monensin the Golgi stack was completely vacuolized. At the same time mature secretory granules were enlarged to severalfold their original size, and after 4h of treatment secretory granules were no longer observed. Despite the marked effects on granule formation and mature secretory granules monensin did not affect the basal release of -endorphin-immunoreactive material during continued incubation for up to 4h, indicating that basal peptide secretion can bypass the monensin block.  相似文献   

8.
R G Anderson  R K Pathak 《Cell》1985,40(3):635-643
Recently we demonstrated that low-pH compartments can be visualized with the electron microscope using a basic congener of dinitrophenol, 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP), which concentrates in acidic compartments and can be detected by immunocytochemistry with a monoclonal anti-dinitrophenol antibody. We now report that DAMP also accumulates in cisternae and vesicles associated with the trans face of the Golgi apparatus. DAMP rapidly leaves this compartment when cells are incubated with the ionophore monensin, which indicates that accumulation is due to the acidic pH in this compartment. Using indirect protein A-gold immunocytochemistry, we localized fibronectin, a major secretory protein in fibroblasts, to the trans Golgi vesicles that took up DAMP. Therefore, the trans cisternae of the Golgi apparatus and forming secretory vesicles have an acidic pH.  相似文献   

9.
We have determined the concentrations of the secretory proteins amylase and chymotrypsinogen and the membrane proteins KDELr and rBet1 in COPII- and COPI-coated pre-Golgi compartments of pancreatic cells by quantitative immunoelectron microscopy. COPII was confined to ER membrane buds and adjacent vesicles. COPI occurred on vesicular tubular clusters (VTCs), Golgi cisternae, the trans-Golgi network, and immature secretory granules. Both secretory proteins exhibited a first, significant concentration step in noncoated segments of VTC tubules and were excluded from COPI-coated tips. By contrast, KDELr and rBet1 showed a first, significant concentration in COPII-coated ER buds and vesicles and were prominently present in COPI-coated tips of VTC tubules. These data suggest an important role of VTCs in soluble cargo concentration by exclusion from COPI-coated domains.  相似文献   

10.
Direct identification of prohormone conversion site in insulin-secreting cells   总被引:44,自引:0,他引:44  
We have localized proinsulin in B cells of human and rat pancreatic islets, using a proinsulin-specific monoclonal antibody revealed by immunocytochemistry. Proinsulin is abundant in Golgi stacks and clathrin-coated secretory granules. It rapidly disappears from these compartments when protein synthesis is inhibited. Depletion of ATP stores prevents movement of proinsulin from the Golgi stacks to the secretory granules; under these conditions, the prohormone in preformed coated granules is converted to insulin, whereas that bound to the Golgi complex is not. Non-coated granules show a low level of proinsulin reactivity under all incubation protocols. These findings provide direct evidence that coated secretory granules are the major, if not the only, cellular site of proinsulin to insulin conversion. They also suggest that the Golgi stack is not involved in conversion, and that intercisternal transport and coated granule formation are hitherto unrecognized energy-requiring steps that precede conversion.  相似文献   

11.
Phogrin (IA2-beta) is an integral membrane protein of dense-core vesicles in neuroendocrine cells. We have examined the recycling of endogenous phogrin following exocytosis in insulin secreting Min6 beta-cells by monitoring stimulus dependent-uptake of antibodies directed against the lumenal domain of the protein. While low levels of internalized phogrin accumulated in LAMP1-positive lysosomes, more than 35% of internalized phogrin recycled back to an insulin-positive compartment and could return to the cell surface during a second exocytic stimulation. The recycling phogrin transited a syntaxin 6-positive compartment but did not appear to go through the TGN38-positive trans Golgi network. The results suggest a model in which secretory membrane components can recycle from the endosomal system to immature secretory granules without interaction with the major portion of the TGN.  相似文献   

12.
Production and secretion of hormones by the pituitary involve highly orchestrated intracellular transport and sorting steps. Hormone precursors are routed through a series of compartments before being packaged in secretory granules. These highly dynamic carriers play crucial roles in both prohormone processing and peptide exocytosis. We have employed the ACTH-secreting AtT-20 cell line to study the membrane sorting events that confer functionality (prohormone activation and regulated exocytosis) to these secretory carriers. The unique ability of granules to promote prohormone processing is attributed to their acidic interior. Using a novel avidin-targeted fluorescence ratio imaging technique, we have found that the trans-Golgi of live AtT-20 cells maintains a mildly acidic (approximately pH 6.2) interior. Budding of secretory granules causes the lumen to acidify to 相似文献   

13.
In the region of the base of the intestinal crypts undifferentiated goblet cells display a configuration and constellation of organelles and membrane structures that are indicative of their importance for function. These images at this stage of development deliver a scenario of the mechanism of secretory granule production: aggregates of protein vesicles from the "transitional elements" (PALADE) of the granular endoplasmic reticulum are, so to speak, rolled up on the trans side of the Golgi apparatus by inversion of peripheral membrane segments of the innermost Golgi lamellae, thereby forming corpuscles. The origin of the capsulated vacuoles, which contain vesicles as single elements or as conglomerates, is well established. Their capsule consists of a trilaminar external and external and internal membrane; between them lies condensed material of the Golgi apparatus. In the opinion of the present author, the development of the ensheathed vacuoles represents a basic, more general mechanism. In contrast, the further steps of synthesis, for the formation of secretory granules, are more heterogeneous. Condensation of the vesicles and the inner capsular membrane results in the formation of a prosecretory granule, which in the basic element in the process of secretory granule production. The prosecretory granules develop singly or by fusion with other granules to give primary secretory granules. The complexity of this mechanism of secretory granule formation, however, becomes evident when considering the apposition of capsulated vacuoles and prosecretory--primary--secondary secretory granules, of prosecretory and primary secretory granules as well as prosecretory granules and secondary secretory granules. Generally, primary granules show a tendency to become secondary secretory granules or to fuse with them. During maturation of the goblet cells the secretory granules fuse to form larger mucous bodies in the theca by fusion of the laminae of the membranes; a final product, there is a homogeneous mucous mass devoid of membranes.  相似文献   

14.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

15.
The delivery of proteins to the vacuole and its limiting membrane (the tonoplast) by the secretory system is thought to be a dissociative process in which vesicles bud from one compartment and fuse with another. We studied the transport kinetics of phytohemagglutinin (PHA) and tonoplast intrinsic protein (TIP) in mesophyll protoplasts obtained from transgenic tobacco plants transformed with genes encoding these two proteins. In pulse-chase experiments, arrival of PHA in the vacuole was found to be slower (completed 24 hr after synthesis) than the arrival of TIP in the tonoplast (completed 6 hr after synthesis). Brefeldin A and monensin block protein transport by interfering in specific vesicle transport steps. Brefeldin A prevents anterograde vesicle transport between the endoplasmic reticulum and the Golgi, whereas monensin inhibits correct sorting in the trans-Golgi network by disrupting the proton gradient across the membrane. Both inhibitors blocked the transport of PHA to the vacuole and altered the rate at which its complex glycan is processed by Golgi enzymes. Neither drug stopped the arrival of TIP in the tonoplast, suggesting that the flow of vesicles continues in the presence of these inhibitors. We suggest that soluble proteins like PHA and membrane proteins like TIP reach their vacuolar destinations by different paths.  相似文献   

16.
Summary The unlabeled antibody-enzyme method was used to demonstrate ultrastructurally the specific localization of vitellogenin in the fat body of Calliphora. In control flies the binding sites to vitellogenin were localized in secretory granules situated in the Golgi complex, and in larger bodies named composite secretory granules. These composite granules appear to be formed when a part of a Golgi complex containing secretory granules and a number of small vesicles become surrounded by a common membrane. Ovariectomized flies, which apparently do not produce secretory granules, exhibited no immunocytochemical staining. Ovariectomized flies in which the administration of ecdysterone induced formation of secretory granules, also revealed specific staining on these granules. This is the first ultrastructural evidence of: (a) the specific localization of vitellogenin in secretory granules of the fat body of an insect; (b) the relationship between the presence of the ovary, and of ecdysterone, and the synthesis of vitellogenin by the fat body.  相似文献   

17.
Proteins are sorted and packaged into regulated secretory granules at the trans Golgi network but how such granules form is poorly understood. We are studying Muclin, the major sulfated protein of the mouse pancreatic acinar cell, and what its role may be in zymogen granule formation. Muclin behaves as a peripheral membrane protein localized to the lumen of the zymogen granule but the cDNA for this protein predicts it is a type I membrane protein with a short, 16-amino-acid, cytosolic tail (C-Tail). Using domain-specific antibodies, we demonstrate that Muclin is derived from a precursor, pro-Muclin, which is cleaved to produce Muclin and an approximately 80-kDa membrane glycoprotein (p80). Incubation of pulse-labeled cells at < or = 22 degrees C to block exit from the trans Golgi network also blocks cleavage of pro-Muclin but not sulfation, a trans Golgi network event, suggesting that cleavage occurs in a post-Golgi compartment. After cleavage the two products of pro-Muclin diverge with Muclin remaining in the regulated secretory pathway and p80 trafficking to the apical plasma membrane, presumably via the constitutive-like pathway. When transfected into exocrine AR42J cells, Muclin labeling is perinuclear and in large sub-plasma membrane puncta. Transiently transfected AR42J cells have greater immunolabeling for amylase than nontransfected cells, suggesting a role for Muclin in cargo accumulation in the regulated secretory pathway. A construct with the C-Tail deleted targets to small diffusely-distributed puncta and without the large sub-plasma membrane structures. Thus, the C-Tail is required for proper Muclin targeting. When transfected into neuroendocrine AtT-20 cells Muclin is not colocalized with ACTH in cell processes, and it appears to be constitutively trafficked to the plasma membrane, suggesting that Muclin has exocrine-specific information. We present a working model for pro-Muclin as a Golgi cargo receptor for exocrine secretory granule formation at the trans Golgi network.  相似文献   

18.
The effects of the carboxylic ionophore monensin have been studied on a rat prolactin cell line (GH3 cells) under basal conditions or after acute stimulation by thyrotropin-releasing hormone (TRH). It was found that 1) monensin induces a rapid dilatation of Golgi elements in these endocrine cells; 2) secretory product, prolactin, is localized by electron microscope immunocytochemistry attached to the inner face of the membrane of these dilated vacuoles; 3) monensin induces preferentially a dilatation of the cis face of the Golgi zone, since the "GERL" complex identified by acid phosphate cytochemistry is disorganized or fragmented rather than vacuolized; and 4) monensin decreases strongly the basal release of prolactin in the culture medium but does not prevent the stimulating effect of TRH on this release. This suggests that monensin blocks preferentially the pathway of release of secretory product under basal conditions in GH3 cells but that another pathway less sensitive to monensin is involved under acute stimulation by TRH.  相似文献   

19.
Trafficking/sorting and granule biogenesis in the beta-cell   总被引:3,自引:0,他引:3  
Proinsulin is packaged into nascent (immature, clathrin-coated) secretory granules in the trans-Golgi network (TGN) of the beta -cell along with other granular constituents including the proinsulin conversion enzymes. It is assumed that such packaging is dependent on an active sorting process, separating granular proteins from other secretory or membrane proteins, but the mechanism remains elusive. As granules mature, the clathrin coat is lost, the intragranular milieu is progressively acidified, and proinsulin is converted to insulin and C-peptide. Loss of clathrin is believed to arise by budding of clathrin-coated vesicles from maturing granules, carrying with them any inappropriate or unnecessary products and providing an additional means for refinement of granular content.  相似文献   

20.
The mucous membrane of the first and second compartments (ventral regions) as well as of the third compartment of Lama guanacoe and Lama lamae stomach shows tubular glands opening into pits. Below the surface epithelium blood capillaries of the fenestrated type form a regular network, each mesh of which surrounds a gastric pit. From a morphological point of view (thin section and freeze-fracture replicas) the columnar cells of the surface epithelium and those of the pits closest to the capillaries are largely similar to the epithelial cells of the rabbit gallbladder. This similarity suggests that at the level of the columnar cells sodium-dependent water reabsorption occurs. This reabsorption has already been demonstrated in the abovementioned compartments by physiological methods. The surface and foveolae epithelial cells as well as some cells of the tubular glands have a secretory function. Their secretory granules contain mucosubstances, as indicated by light-(PAS- and Alcian blue reactions) and electron microscopic (PA-TCH-Ag-reaction) histochemistry. The secretory granules originate from the Golgi complex which shows a positive histochemical reaction in its innermost sacculi at the electron microscope level. Endocrine cells (s. second part of this investigation) are rare. The mucosal membrane of each muscular lip separating the glandular sacs in the first compartment shows a stratified, not keratinized, squamous epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号