首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Short-term immunotherapy targeting both LFA-1 and CD40/CD154 costimulation produces synergistic effects such that long-term allograft survival is achieved in the majority of recipients. This immunotherapeutic strategy has been reported to induce the development of CD4+ regulatory T cells. In the current study, the mechanisms by which this immunotherapeutic strategy prevents CD8+ T cell-dependent hepatocyte rejection in CD4 knockout mice were examined. Combined blockade of LFA-1 and CD40/CD154 costimulation did not influence the overall number or composition of inflammatory cells infiltrating the liver where transplanted hepatocytes engraft. Expression of T cell activation markers CD43, CD69, and adhesion molecule CD103 by liver-infiltrating cells was suppressed in treated mice with long-term hepatocellular allograft survival compared to liver-infiltrating cells of untreated rejector mice. Short-term immunotherapy with anti-LFA-1 and anti-CD154 mAb also abrogated the in vivo development of alloreactive CD8+ cytotoxic T cell effectors. Treated mice with long-term hepatocyte allograft survival did not reject hepatocellular allografts despite adoptive transfer of naive CD8+ T cells. Unexpectedly, treated mice with long-term hepatocellular allograft survival demonstrated prominent donor-reactive delayed-type hypersensitivity responses, which were increased in comparison to untreated hepatocyte rejectors. Collectively, these findings support the conclusion that short-term immunotherapy with anti-LFA-1 and anti-CD154 mAbs induces long-term survival of hepatocellular allografts by interfering with CD8+ T cell activation and development of CTL effector function. In addition, these recipients with long-term hepatocellular allograft acceptance show evidence of immunoregulation which is not due to immune deletion or ignorance and is associated with early development of a novel CD8+CD25high cell population in the liver.  相似文献   

2.
mAb therapy directed against a variety of cell surface accessory molecules has been effectively utilized to prolong allograft acceptance in various models of tissue and organ transplantation. The purpose of this study was to determine whether transient therapy directed against the adhesion molecule LFA-1 (CD11a) was sufficient to induce donor-specific tolerance to pancreatic islet allografts. Anti-LFA-1 monotherapy was found to be efficacious in inducing long-term islet allograft acceptance in multiple donor-recipient strain combinations. Graft acceptance following anti-LFA-1 therapy was not simply due to clonal ignorance of donor Ags in that the majority of recipients bearing established islet allografts resisted rejection induced by immunization with donor-type APCs. Furthermore, donor-specific tolerance from anti-LFA-1-treated animals could be transferred to secondary immune-deficient animals. Taken together, these results indicated that transient anti-LFA-1 monotherapy resulted in donor-specific tolerance. In vitro, functionally tolerant animals retained normal anti-donor reactivity as assessed by proliferative, cytotoxic, and cytokine release assays that demonstrated that tolerance was not secondary to general clonal deletion or anergy of donor-reactive T cells. Finally, anti-LFA-1 treatment was effective in both IL-4-deficient and IFN-gamma-deficient recipients, indicating that neither of these cytokines are universally required for allograft acceptance. These results suggest that anti-adhesion-based therapy can induce a nondeletional form of tolerance that is not overtly dependent on the prototypic Th1 and Th2 cytokines, IFN-gamma and IL-4, respectively, in contrast to results in other transplantation models.  相似文献   

3.
Blockade of the CD40-CD154 costimulatory pathway can inhibit CD4(+) T cell-mediated alloimmune responses. The aim of this study was to define the in vivo requirement for CD40-CD154 costimulation by CD4(+) T cells that respond to alloantigen following direct recognition. We used TCR-transgenic CD4(+) T cells that are reactive to the MHC class II alloantigen, H2A(s). An experimental in vivo model was established that allowed direct comparison of the fate of a trace population of H2A(s)-reactive CD4(+) T cells when challenged with different forms of H2A(s+) alloantigen under conditions of CD40-CD154 costimulation blockade. In this study, we demonstrate that an i.v. infusion of H2A(s+) leukocytes in combination with anti-CD154 therapy rapidly deletes H2A(s)-reactive CD4(+) T cells. In contrast, following transplantation of an H2A(s+) cardiac allograft, H2A(s)-reactive CD4(+) T cell responses were unaffected by blocking CD40-CD154 interactions. Consistent with these findings, combined treatment with donor leukocytes and anti-CD154 therapy was found to be more effective in prolonging the survival of cardiac allografts compared with CD154 mAb treatment alone. The dominant mechanism by which donor leukocyte infusion and anti-CD154 therapy facilitate allograft acceptance is deletion of donor-reactive direct pathway T cells. No evidence for the generation of regulatory cells by this combined therapy was found. Taken together, these results clearly demonstrate that naive alloreactive CD4(+) T cells have distinct requirements for CD40-CD154 costimulation depending on the form and microenvironment of primary alloantigen contact.  相似文献   

4.
The mechanisms underlying latent-virus-mediated heterologous immunity, and subsequent transplant rejection, especially in the setting of T cell costimulation blockade, remain undetermined. To address this, we have utilized MHV68 to develop a rodent model of latent virus-induced heterologous alloimmunity. MHV68 infection was correlated with multimodal immune deviation, which included increased secretion of CXCL9 and CXCL10, and with the expansion of a CD8dim T cell population. CD8dim T cells exhibited decreased expression of multiple costimulation molecules and increased expression of two adhesion molecules, LFA-1 and VLA-4. In the setting of MHV68 latency, recipients demonstrated accelerated costimulation blockade-resistant rejection of skin allografts compared to non-infected animals (MST 13.5 d in infected animals vs 22 d in non-infected animals, p<.0001). In contrast, the duration of graft acceptance was equivalent between non-infected and infected animals when treated with combined anti-LFA-1/anti-VLA-4 adhesion blockade (MST 24 d for non-infected and 27 d for infected, p = n.s.). The combination of CTLA-4-Ig/anti-CD154-based costimulation blockade+anti-LFA-1/anti-VLA-4-based adhesion blockade led to prolonged graft acceptance in both non-infected and infected cohorts (MST>100 d for both, p<.0001 versus costimulation blockade for either). While in the non-infected cohort, either CTLA-4-Ig or anti-CD154 alone could effectively pair with adhesion blockade to prolong allograft acceptance, in infected animals, the prolonged acceptance of skin grafts could only be recapitulated when anti-LFA-1 and anti-VLA-4 antibodies were combined with anti-CD154 (without CTLA-4-Ig, MST>100 d). Graft acceptance was significantly impaired when CTLA-4-Ig alone (no anti-CD154) was combined with adhesion blockade (MST 41 d). These results suggest that in the setting of MHV68 infection, synergy occurs predominantly between adhesion pathways and CD154-based costimulation, and that combined targeting of both pathways may be required to overcome the increased risk of rejection that occurs in the setting of latent-virus-mediated immune deviation.  相似文献   

5.
Central transplantation tolerance through hemopoietic chimerism initially requires inhibition of allogeneic stem cell or bone marrow (BM) rejection, as previously achieved in murine models by combinations of T cell costimulation blockade. We have evaluated LFA-1 blockade as part of regimens to support mixed hemopoietic chimerism development upon fully allogeneic BALB/c BM transfer to nonirradiated busulfan-treated B6 recipient mice. Combining anti-LFA-1 with anti-CD40 ligand (CD40L) induced high incidences and levels of stable multilineage hemopoietic chimerism comparable to chimerism achieved with anti-CD40L and everolimus (40-O-(2-hydroxyethyl)-rapamycin) under conditions where neither Ab alone was effective. The combination of anti-LFA-1 with everolimus also resulted in high levels of chimerism, albeit with a lower incidence of stability. Inhibition of acute allograft rejection critically depended on chimerism stability, even if maintained at very low levels around 1%, as was the case for some recipients without busulfan conditioning. Chimerism stability correlated with a significant donor BM-dependent loss of host-derived Vbeta11(+) T cells 3 mo after BM transplantation (Tx). Combinations of anti-CD40L with anti-LFA-1 or everolimus also prevented acute rejection of skin allografts transplanted before established chimerism, albeit not independently of allospecific BMTx. All skin and heart allografts transplanted to stable chimeras 3 and 5 mo after BMTx, respectively, were protected from acute rejection. Moreover, this included prevention of heart allograft vascular intimal thickening ("chronic rejection").  相似文献   

6.
Nondepleting anti-CD154 (CD40 ligand) mAbs have proven effective in inducing transplantation tolerance in rodents and primates. In the induction phase, anti-CD154 Ab therapy is known to enhance apoptosis of Ag reactive T cells. However, this may not be the sole explanation for tolerance, as we show in this study that tolerance is maintained through a dominant regulatory mechanism which, like tolerance induced with CD4 Abs, manifests as infectious tolerance. Therefore, tolerance induced with anti-CD154 Abs involves not only the deletion of potentially aggressive T cells, but also a contagious spread of tolerance to new cohorts of graft-reactive T cells as they arise.  相似文献   

7.
Mixed chimerism and donor-specific tolerance are achieved in mice receiving 3 Gy of total body irradiation and anti-CD154 mAb followed by allogeneic bone marrow (BM) transplantation. In this model, recipient CD4 cells are critically important for CD8 tolerance. To evaluate the role of CD4 cells recognizing donor MHC class II directly, we used class II-deficient donor marrow and were not able to achieve chimerism unless recipient CD8 cells were depleted, indicating that directly alloreactive CD4 cells were necessary for CD8 tolerance. To identify the MHC class II(+) donor cells promoting this tolerance, we used donor BM lacking certain cell populations or used positively selected cell populations. Neither donor CD11c(+) dendritic cells, B cells, T cells, nor donor-derived IL-10 were critical for chimerism induction. Purified donor B cells induced early chimerism and donor-specific cell-mediated lympholysis tolerance in both strain combinations tested. In contrast, positively selected CD11b(+) monocytes/myeloid cells did not induce early chimerism in either strain combination. Donor cell preparations containing B cells were able to induce early deletion of donor-reactive TCR-transgenic 2C CD8 T cells, whereas those devoid of B cells had reduced activity. Thus, induction of stable mixed chimerism depends on the expression of MHC class II on the donor marrow, but no requisite donor cell lineage was identified. Donor BM-derived B cells induced early chimerism, donor-specific cell-mediated lympholysis tolerance, and deletion of donor-reactive CD8 T cells, whereas CD11b(+) cells did not. Thus, BM-derived B cells are potent tolerogenic APCs for alloreactive CD8 cells.  相似文献   

8.
Sensitization to donor Ags is an enormous problem in clinical transplantation. In an islet allograft model, presensitization of recipients through donor-specific transfusion (DST) 4 wk before transplantation results in accelerated rejection. We demonstrate that combined DST with anti-CD154 (CD40L) therapy not only prevents the deleterious presensitization produced by pretransplant DST in the islet allograft model, it also induces broad alloantigen-specific tolerance and permits subsequent engraftment of donor islet or cardiac grafts without further treatment. In addition, our data strongly indicate that CTLA4-negative T cell signals are required to achieve prolonged engraftment of skin allograft or tolerance to islet allograft in recipients treated with a combination of pretransplant DST and anti-CD154 mAb. We provide direct evidence that a CD28-independent CTLA4 signal delivers a strong negative signal to CD4+ T cells that can block alloimmune MLR responses. In this study immune deviation into a Th2 (IL-4) response was associated with, but did not insure, graft tolerance, as the inopportune timing of B7 blockade with CTLA4/Ig therapy prevented uniform tolerance but did not prevent Th2-type immune deviation. While CTLA4-negative signals are necessary for tolerance induction, Th1 to Th2 immune deviation cannot be sufficient for tolerance induction. Combined pretransplant DST with anti-CD154 mAb treatment may be attractive for clinical deployment, and strategies aimed to selectively block CD28 without interrupting CTLA4/B7 interaction might prove highly effective in the induction of tolerance.  相似文献   

9.
Treatment of mice with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb to block CD40-mediated signaling uniformly induces donor-specific transplantation tolerance. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. The nature of the cellular mechanisms involved and the basis for the difference in survival of islet vs skin allografts are not known. In this study, we used CD40 knockout mice to investigate the role of CD40-mediated signaling in each component of the tolerance induction protocol: the DST, the graft, and the host. When CD40-mediated signaling was eliminated in only the DST or the graft, islet allografts were rapidly rejected. However, when CD40 signaling was eliminated in the host, approximately 40% of the islet allografts survived. When CD40 signaling was eliminated in the DST, the graft, and the host, islet grafts survived long term (>84 days), whereas skin allografts were rapidly rejected ( approximately 13 days). We conclude that transplantation tolerance induction in mice treated with DST and anti-CD154 mAb requires blockade of CD40-mediated signaling in the DST, the graft, and the host. Blockade of CD40-mediated signaling is necessary and sufficient for inducing islet allograft tolerance and is necessary but not sufficient for long-term skin allograft survival. We speculate that a requirement for regulatory CD4(+) T cells in skin allograft recipients could account for this differential response to tolerance induction.  相似文献   

10.
Allograft rejection in sensitized recipients remains the major problem in clinical organ transplantation. We have developed a donor-type skin-sensitized mouse cardiac allograft model (BALB/c-->C57BL/6) in which both rejection (<5 days) and alloreactive CD8 activation are resistant to CD154 blockade. First, we attempted to elucidate why CD154 blockade fails to protect cardiac grafts in sensitized recipients. The gene array analysis has revealed that treatment with anti-CD154 mAb (MR1) had distinctive impact on host immunity in naive vs sensitized animals. Unlike in naive counterparts, host sensitization mitigated the impact of CD154 blockade on critical immune signaling pathways. Indeed, we identified 3234 genes in cardiac grafts that were down-regulated by MR1 in naive (at least 5-fold), but remained unaffected in sensitized hosts. Moreover, MR1 treatment failed to prevent accumulation of CD4 T cells in cardiac allografts of sensitized recipients. Then, to determine the role of CD4 help in CD154 blockade-resistant immune response, we used CD4-depleting and CD4-blocking Ab, in conjunction with MR1 treatment. Our data revealed that CD154 blockade-resistant CD8 activation in sensitized mice was dependent on CD4 T cells. In the absence of CD4 help, CD154 blockade prevented differentiation of alloreactive CD8 T cells into CTL effector/memory cells and abrogated acute rejection (cardiac graft survival for >30 days), paralleled by selective target gene depression at the graft site. These results provide the rationale to probe potential synergy of adjunctive therapy targeting CD4 and CD154 to overcome graft rejection in sensitized recipients.  相似文献   

11.
Alloantibodies can play a key role in acute and chronic allograft rejection. However, relatively little is known of factors that control B cell responses following allograft tolerance induction. Using 3-83 Igi mice expressing an alloreactive BCR, we recently reported that allograft tolerance was associated with the sustained deletion of the alloreactive B cells at the mature, but not the immature, stage. We have now investigated the basis for the long-term control of alloreactive B cell responses in a non-BCR-transgenic model of C57BL/6 cardiac transplantation into BALB/c recipients treated with anti-CD154 and transfusion of donor-specific spleen cells. We demonstrate that the long-term production of alloreactive Abs by alloreactive B cells is actively regulated in tolerant BALB/c mice through the dominant suppression of T cell help. Deletion of CD25(+) cells resulted in a loss of tolerance and an acquisition of the ability to acutely reject allografts. In contrast, the restoration of alloantibody responses required both the deletion of CD25(+) cells and the reconstitution of alloreactive B cells. Collectively, these data suggest that alloreactive B cell responses in this model of tolerance are controlled by dominant suppression of T cell help as well as the deletion of alloreactive B cells in the periphery.  相似文献   

12.
Beilke JN  Kuhl NR  Van Kaer L  Gill RG 《Nature medicine》2005,11(10):1059-1065
Although major histocompatibility complex (MHC) class II-restricted CD4 T cells are well appreciated for their contribution to peripheral tolerance to tissue allografts, little is known regarding MHC class I-dependent reactivity in this process. Here we show a crucial role for host MHC class I-dependent NK cell reactivity for allograft tolerance in mice induced through either costimulation blockade using CD154-specific antibody therapy or by targeting LFA-1 (also known as CD11a). Tolerance induction absolutely required host expression of MHC class I, but was independent of CD8 T cell-dependent immunity. Rather, tolerance required innate immunity involving NK1.1(+) cells, but was independent of CD1d-restricted NKT cells. Therefore, NK cells seem to be generally required for induction of tolerance to islet allografts. Additional studies indicate that CD154-specific antibody-induced allograft tolerance is perforin dependent. Notably, NK cells that are perforin competent are sufficient to restore allograft tolerance in perforin-deficient recipients. Together, these results show an obligatory role for NK cells, through perforin, for induction of tolerance to islet allografts.  相似文献   

13.
A two-element protocol consisting of one donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb greatly prolongs the survival of murine islet, skin, and cardiac allografts. To study the mechanism of allograft survival, we determined the fate of tracer populations of alloreactive transgenic CD8+ T cells in a normal microenvironment. We observed that DST plus anti-CD154 mAb prolonged allograft survival and deleted alloreactive transgenic CD8+ T cells. Neither component alone did so. Skin allograft survival was also prolonged in normal recipients treated with anti-CD154 mAb plus a depleting anti-CD8 mAb and in C57BL/6-CD8 knockout mice treated with anti-CD154 mAb monotherapy. We conclude that, in the presence of anti-CD154 mAb, DST leads to an allotolerant state, in part by deleting alloreactive CD8+ T cells. Consistent with this conclusion, blockade of CTLA4, which is known to abrogate the effects of DST and anti-CD154 mAb, prevented the deletion of alloreactive transgenic CD8+ T cells. These results document for the first time that peripheral deletion of alloantigen-specific CD8+ T cells is an important mechanism through which allograft survival can be prolonged by costimulatory blockade. We propose a unifying mechanism to explain allograft prolongation by DST and blockade of costimulation.  相似文献   

14.
Memory T cells have specific properties that are beneficial for rapid and efficient protection from pathogens previously encountered by a host. These same features of memory T cells may be deleterious in the context of a transplanted organ. Consistent with this contention is the accumulating evidence in experimental transplantation that previously sensitized animals are resistant to the effects of costimulatory blockade. Using a model of murine cardiac transplantation, we now demonstrate that alloreactive memory CD4(+) T cells prevent long-term allograft survival induced through donor-specific cell transfusion in combination with anti-CD40 ligand Ab (DST/anti-CD40L). We show that memory donor-reactive CD4(+) T cells responding through the direct or indirect pathways of allorecognition provide help for the induction of antidonor CD8(+) T effector cells and for Ab isotype switching, despite DST/anti-CD40L. The induced pathogenic antidonor immunity functions in multiple ways to subsequently mediate graft destruction. Our findings show that the varied functions of alloreactive memory CD4(+) T cells remain intact despite DST/anti-CD40L-based costimulatory blockade, a finding that will likely have important implications for designing approaches to induce tolerance in human transplant recipients.  相似文献   

15.
Once nonobese diabetic (NOD) mice become diabetic, they are highly resistant to islet transplantation. The precise mechanism of such resistance remains largely unknown. In the present study we tested the hypothesis that islet allograft survival in the diabetic NOD mouse is determined by the interplay of diverse islet-specific T cell subsets whose activation is regulated by CD28/CD154 costimulatory signals and the common gamma-chain (gammac; a shared signaling element by receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21). We found that common gammac blockade is remarkably effective in blocking the onset and the ongoing autoimmune diabetes, whereas CD28/CD154 blockade has no effect in suppressing the ongoing diabetes. However, CD28/CD154 blockade completely blocks the alloimmune-mediated islet rejection. Also, a subset of memory-like T cells in the NOD mice is resistant to CD28/CD154 blockade, but is sensitive to the common gammac blockade. Nonetheless, neither common gammac blockade nor CD28/CD154 blockade can prevent islet allograft rejection in diabetic NOD mice. Treatment of diabetic NOD recipients with CD28/CD154 blockade plus gammac blockade markedly prolongs islet allograft survival compared with the controls. However, allograft tolerance is not achieved, and all CTLA-4Ig-, anti-CD154-, and anti-gammac-treated diabetic NOD mice eventually rejected the islet allografts. We concluded that the effector mechanisms in diabetic NOD hosts are inherently complex, and rejection in this model involves CD28/CD154/gammac-dependent and -independent mechanisms.  相似文献   

16.
17.
Immune activation via TLRs is known to prevent transplantation tolerance in multiple animal models. To investigate the mechanisms underlying this barrier to tolerance induction, we used complementary murine models of skin and cardiac transplantation in which prolonged allograft acceptance is either spontaneous or pharmacologically induced with anti-CD154 mAb and rapamycin. In each model, we found that prolonged allograft survival requires the presence of natural CD4(+)Foxp3(+) T regulatory cells (Tregs), and that the TLR9 ligand CpG prevents graft acceptance both by interfering with natural Treg function and by promoting the differentiation of Th1 effector T cells in vivo. We further demonstrate that although Th17 cells differentiate from naive alloreactive T cells, these cells do not arise from natural Tregs in either CpG-treated or untreated graft recipients. Finally, we show that CpG impairs natural Treg suppressor capability and prevents Treg-dependent allograft acceptance in an IL-6-independent fashion. Our data therefore suggest that TLR signals do not prevent prolonged graft acceptance by directing natural Tregs into the Th17 lineage or by using other IL-6-dependent mechanisms. Instead, graft destruction results from the ability of CpG to drive Th1 differentiation and interfere with immunoregulation established by alloreactive natural CD4(+)Foxp3(+) Tregs.  相似文献   

18.
CD45 is known to have tyrosine phosphatase activity for signal transduction of T cells. Immunomodulation of CD45 has been tried to prevent T cell-mediated graft rejection in organ transplantation. In vitro study showed that blockade of CD45RB, an alternative splicing isoform of CD45, inhibited proliferative response of T cells after allogeneic stimulation. Treatment with a monoclonal antibody (mAb) against CD45RB induced long-term allograft acceptance in some mouse organ transplantation models. In a rat heart allograft model, a single injection of anti-rat CD45 (RT7) mAb which bound to allomorphic region of RT7 also induced allograft acceptance. CD45/RT7 is also a useful tool of targeting hematopoietic cells, because of the selective expression on all hematopoietic cells. There are two allomorphic forms of CD45 (RT7a and RT7b) in the rat. Using RT7 system, a rat heart allograft model from RT7a donors to RT7b recipients was designed to test functional relevance of graft-associated hematopoietic cells (microchimerism) to allograft acceptance. Then donor-derived hematopoietic cells were selectively depleted using anti-RT7a mAb in vivo. Depletion on day 0 prevented allograft acceptance and was associated with severe acute or chronic graft rejection, while depletion on day 18 after transplantation showed no effect. This experimental study showed a crucial role of microchimerism in induction phase of allograft acceptance. In conclusion, the CD45/RT7 system is not only a target molecule for tolerance induction, but also an useful tool for experimental models in transplantation immunology. In this review, we introduce basic properties of CD45 and recent results with manipulation of CD45.  相似文献   

19.
在ConA和固相抗CD_3单抗刺激系统中,应用抗LFA-1/ICAM-1单抗,研究其在胸腺细胞活化中的功能作用,结果证明,培养初期加入可溶性抗LFA-1可完全阻断ConA活化胸腺细胞增殖,对固相抗CD3单抗诱导的胸腺细胞活化也表现出相同的抑制效应,但对ConA刺激24h后的胸腺细胞应答以及IL-1 IL-2诱导的胸腺细胞增殖无影响。在可溶性抗LFA-1单抗的存在下,ConA诱导胸腺细胞合成IL-2和IL-6的能力显著下降,IL-2R的表达降低。此外,当用固相抗LFA-1和固相抗CD3或用二抗交联LFA-1和CD3刺激胸腺细胞时,抗LFA-1则具有明显地促增殖应答效应,单纯固相抗LFA-1刺激或交联LFA-1均无诱导活化作用,研究结果表明,LFA-1是未成熟胸腺细胞活化的重要辅助分子之一,它可参与TCR/CD3途径介导的早期活化信号的传导,并为胸腺细胞表达IL-2R 和产生IL-2可能提供复合刺激信号。  相似文献   

20.
The induction and maintenance of allograft tolerance is a daunting challenge. Although combined blockade of CD28 and CD40 ligand (CD40L)-costimulatory pathways prevents allograft rejection in some murine models, this strategy is unable to sustain engraftment in the most immunogenic allograft and strain combinations. By targeting T cell activation signals 1 and 2 with the novel combination of anti-CD45RB and anti-CD40L, we now demonstrate potent enhancement of engraftment in C57BL/6 recipients that are relatively resistant to costimulatory blockade. This combination significantly augments the induction of tolerance to islet allografts and dramatically prolongs primary skin allograft survival. Compared with either agent alone, anti-CD45RB plus anti-CD40L inhibits periislet infiltration by CD8 cells, B cells, and monocytes; inhibits Th1 cytokines; and increases Th2 cytokine expression within the graft. These data indicate that interference with activation signals one and two may provide synergy essential for prolonged engraftment in situations where costimulatory blockade is only partially effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号