首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
During the austral summer of 1995, distributions of phytoplankton biomass (as chlorophyll a), primary production, and nutrient concentrations along two north-south transects in the marginal ice zone of the northwestern Weddell Sea were examined as part of the 8th Korean Antarctic Research Program. An extensive phytoplankton bloom, ranging from 1.6 to 11.2 mg m−3 in surface chlorophyll a concentration, was encountered along the eastern transect and extended ca. 180 km north of the ice edge. The spatial extent of the bloom was closely related to the density field induced by the input of meltwater from the retreating sea ice. However, the extent (ca. 200 km) of the phytoplankton bloom along the western transect exceeded the meltwater-influenced zone (ca. 18 km). The extensive bloom along the western transect was more closely related to local hydrography than to the proximity of the ice edge and the resulting meltwater-induced stability of the upper water column. In addition, the marginal ice zone on the western transect was characterized by a deep, high phytoplankton biomass (up to 8 mg Chl a m−3) extending to 100-m depth, and the decreased nutrient concentration, which was probably caused by passive sinking from the upper euphotic zone and in situ growth. Despite the low bloom intensity relative to the marginal ice zone in both of the transects, mean primary productivity (2.6 g C m−2 day−1) in shelf waters corresponding to the northern side of the western transect was as high as in the marginal ice zone (2.1 g C m−2 day−1), and was 4.8 times greater than that in open waters, suggesting that shelf waters are as highly productive as the marginal ice zone. A comparison between the historical productivity data and our data also shows that the most productive regions in the Southern Ocean are shelf waters and the marginal ice zone, with emerging evidence of frontal regions as another major productive site. Accepted: 27 September 1998  相似文献   

2.
Mark-capture dispersal studies were conducted to investigate the feasibility of marking the southwestern desert subterranean termite, Heterotermes aureus (Snyder) with rabbit immunoglobulin G (IgG). In turn, short-range dispersal patterns of H. aureus were measured across a 20-m diameter desert landscape at three distinct field locations. Each location consisted of 51 termite feeding stations containing corrugated cardboard. The central feeding station (CFS) at each location was impregnated with rabbit IgG. A circular grid was then constructed around each CFS that consisted of 50 additional unmarked cardboard feeding stations strategically placed around the CFS at distances of 1.5, 2.0, 4.0, 7.0 or 10.0 m. Termites self-marked with rabbit IgG by feeding on the marked bait. The CFS and the 50 peripheral feeding stations were sampled for marked termites twice at each location 17–65 days after the marked bait was placed at the CFS to determine the spatial dispersal patterns of H. aureus within each research grid. Termites that self marked by feeding on rabbit IgG marked bait were detected by an anti-rabbit IgG enzyme-linked immunosorbent assay (ELISA). Generally, the CFSs contained the highest frequency of marked termites with 28.0% of the individuals assayed from the CFSs containing rabbit IgG. Over the course of the study, 39 of the unmarked peripheral feeding stations contained at least one marked termite. Of the termites assayed from the peripheral stations (n = 2,955), 124 or 4.2% of the individuals contained the mark. The average distance traveled by the marked termites collected at the peripheral feeding stations was 5.7 ± 3.3 m from the CFSs. We also examined single nucleotide polymorphisms (SNPs) from termites collected at each field site. Data indicated that each field site were genetically distinct and therefore non-related termites. We discuss the advantages and limitations of marking termites with rabbit IgG for dispersal studies.  相似文献   

3.
Through their role as ‘ecosystem engineers’, termites provide a range of ecosystem services including decomposition, and carbon and nitrogen cycling. Although termite diversity levels differ between regions as a result of variation in regional species pool size, in general, termite diversity is thought to decline with elevation. This study (1) investigated how termite species density, abundance, functional group diversity and termite attack on dead wood vary with altitude along an Amazon–Andes altitudinal gradient in Peru; (2) identified likely environmental causes of this pattern; and (3) explored the implications of termite presence for ecosystem functioning (notably for decomposition). Termites were sampled with a standardized 100 × 2 m straight‐belt transect at five undisturbed forest sites along a gradient 190 to 3025 m, as were environmental variables and termite and fungus attack on dead wood. Termite diversity was similar to that found at comparable sites in South America, and there was little turnover of assemblage composition with elevation suggesting that montane specialists are not present. Termite diversity declined with increased elevation, though the upper distribution limit for termites was at a lower elevation than anticipated. We suggest that key drivers of this elevation pattern are reduced temperature with altitude and mid‐elevation peaks in soil water content. Also, attack on dead wood diminished with decreasing termite indirect absolute abundance, while the depth of the soil humic layer increased. We hypothesize that termite abundance is a major accelerant of decomposition rates (and associated mineralization) in Amazonian forests.  相似文献   

4.
Abstract.  1. Primary and logged lowland dipterocarp forest sites were sampled for subterranean termites using soil pits located on a grid system in order to detect any patchiness in their distribution.
2. A spatial pattern in termite distributions was observed in the primary and logged sites, but the response differed between soil-feeding and non-soil-feeding termites.
3. Spatial analysis showed that soil-feeding termites were homogeneously distributed in the primary forest but significantly aggregated in the logged forest. This pattern was reversed for non-soil-feeding termites and may result from differences in resource provisioning between the two sites.
4. Gaps in termite distribution comprised a greater area than patches for both feeding groups and sites, but gaps dominated the logged site.
5. A significant association between soil-feeding and non-soil-feeding termite distributions occurred at both sites. This arose from an association between patches in the primary forest and between gaps in the logged forest.
6. Termite spatial pattern was optimally observed at a minimum extent of 64 m and lag of 2 m.
7. The spatially explicit SADIE (Spatial Analysis by Distances IndicEs) analyses were more successful than (non-spatially explicit) multivariate analysis (Canonical Correspondence Analysis) at detecting associations between termite spatial distributions and that of other biotic and abiotic variables.  相似文献   

5.
The effects of climate (precipitation and temperature) on sexual dimorphism and population structure were analysed along a broad-scale environmental gradient covering the distributional range of the endemic dioecious species Corema album, along the west coast of the Iberian Peninsula. We aimed to assess distribution constraints and sex-related differences in demography and size associated with higher reproductive investment in females. Nine populations were chosen from across the geographic range of C. album and ten 10 × 10 m plots were established (10 m apart) along a 200-m transect. All male, female and non-reproductive shrubs were quantified within each plot and plant size, photosynthetic layer, height, sex ratio, population density and structure, and spatial segregation of sexes, under environmental conditions ranging from temperate to Mediterranean climate, were recorded and analysed. Increased aridity was related to lower population density and less structured populations, indicating an effect of higher temperature and lower precipitation on regeneration. Sexual dimorphism was influenced by climate, with size differences between sexes varying with aridity. However, demographic differences between sexes reflected in sex ratio deviations or the occurrence of spatial segregation were unrelated to any climatic variable, suggesting the existence of compensatory mechanisms that may counterbalance the higher reproductive effort of female plants. The results show the vulnerability of this endemic species to the increase in aridity expected in the southernmost limit of the biogeographical area due to global climate change, and demonstrate the importance of broad scale studies in the assessment of sexual dimorphism.  相似文献   

6.
Abstract Termites are major decomposers in tropical ecosystems. To characterize their assemblages in terms of taxonomical and functional composition, Jones and Eggleton (2000, Journal of Applied Ecology 37, 191–203) recently proposed a standardized sampling protocol based on belt transects of 100 m × 2 m. We evaluated the representativeness of samples obtained by this protocol, and its suitability to calculate diversity statistics, by replicating it in an area of naturally fragmented subtropical forest. We sampled six 100 m transects in separate small forest islets, and one transect extended to 500 m in a large islet, recording presence/absence data (occurrences) of termite species in successive quadrats of 5 m × 2 m. In the large islet, strips of 100 m within the 500 m transect produced extremely variable species richness figures. This variability was primarily due to heterogeneity in the spatial distribution of soil‐dwelling termites. Combining non‐contiguous quadrats allowed us to span a broader diversity of microhabitats for an equal effort, providing less variable results and faster species accumulation. Individual transects of 100 m in small forest islets yielded too few samples to allow reliable estimations of total species richness, although these transects when pooled constituted a useful data set for comparison with other sites. In the focal habitat, a single 100 m transect appeared therefore inadequate to allow a reliable characterization of the termite assemblage, even at the level of a single forest islet. To improve the rate of species accumulation and to obtain diversity statistics allowing intersite comparisons, we suggest the use of smaller, non‐contiguous quadrats, and that sampling be continued until stable diversity estimates are obtained. In the habitat studied, such an alternative protocol could be adequately combined with a standardized protocol for collecting ground‐dwelling ants.  相似文献   

7.
Chlorophyll a and nutrient concentrations along with temperature and salinity values were measured at 22 CTD stations along a 735-km transect running to the northwest of the island of South Georgia, Southern Ocean. Measurements were repeated during five summer surveys (January and February 1994, January 1996, December 1996, January 1998) and one spring survey (October 1997). The transect sampled Sub-Antarctic Zone water in the north, Polar Frontal Zone water and Antarctic Zone water in the south. Chlorophyll a concentrations were lowest to the north of the transect and frequently high (up to 17 mg m−3) in the deep open ocean of the Antarctic Zone. Sub-surface peaks were measured in all zones and chlorophyll a was detectable to a depth of 150 m. There was a clear latitudinal temperature gradient in the near-surface waters (0–50 m), the warmest water occurring in the north (∼12 °C), and the coolest in the Antarctic Zone (∼2 °C). There was also a well-defined latitudinal gradient in summer near-surface silicate concentrations (∼2, 4, and 10 mmol m−3 in the Sub-Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone, respectively), increasing to >20 mmol m−3 near South Georgia. Distinct differences in silicate concentrations were also evident in all three zones to a depth of 500 m. Near-surface nitrate and phosphate concentrations were relatively low to the north of the transect (∼14 and 1 mmol m−3, respectively) and higher in the Polar Frontal Zone and Antarctic Zone (∼18 and 1.4 mmol m−3, respectively). Ammonium and nitrite were restricted to the upper 200 m of the water column, and exhibited sub-surface concentration peaks, the lowest being in the Sub-Antarctic Zone (0.68 and 0.25 mmol m−3, respectively) and the highest in the Antarctic Zone (1.72 and 0.29 mmol m−3, respectively). Surface (∼6 m) spring nutrient measurements provided an indication of pre-bloom conditions; ammonium and nitrite concentrations were low (∼0.27 and 0.28 mmol m−3, respectively), while silicate, nitrate and phosphate concentrations were high and similar to previously measured winter values (e.g. ∼26, 23, 2 mmol m−3, respectively in the Antarctic Zone). Although the values measured were very variable, and there was some evidence of a seasonal growth progression, the chlorophyll a and nutrient distribution patterns were dominated by intercruise (interannual) factors. Approximate nutrient depletions (spring minus summer) appeared similar in the Polar Frontal Zone and Antarctic Zone for nitrate and phosphate, while silicate showed a marked latitudinal increase from north to south throughout the transect. Highest chlorophyll a concentrations coincided with the highest apparent silicate depletions over the deep ocean of the Antarctic Zone. In this area, relatively warm, easterly flowing Antarctic Circumpolar Current water meets cooler, westerly flowing water that is influenced by the Weddell-Scotia Confluence and is rich in nutrients, especially silicate. Accepted: 27 November 1999  相似文献   

8.
The composition of the phytoplanktonic communities in the surface waters of the La Reunion-Kerguelen transect (from 38°36S to 46°33S) has been investigated under spring conditions (Antarès 3 cruise, France-JGOFS, 28 September–8 November, 1995). The study, conducted at six stations in the subtropical frontal zone, involved size fractionations (threshold: 2 μm). The large variations in the overall biomass and autotrophic carbon fixation, calculated via Rubisco activity measurements and expressed respectively in terms of μg chlorophyll (a + b + c) per liter and nmol fixed carbon dioxide per liter and per hour, were attributable only to phytoplanktonic cells of >2 μm, with a peak observed in the frontal zone. The picophytoplankton (<2 μm) biomass remained constant throughout the transect, but the evolution of the species composition of the picophytoplanktonic population, as calculated from flow cytometry measurements through this frontal zone, changed. This study provides evidence, for the first time in this area, of the disappearance of prochlorophytes from the south of the frontal zone (42–47°S). Picoeukaryotes (<2 μm) and cyanobacteria populations, resolved by flow cytometry, were present all along the transect. However, their abundance decreased southward up to the quasi-disappearance of cyanobacteria at the southernmost station (52°S) that is characteristic of antarctic waters. The presence of prochlorophytes that is exclusive to the subtropical surface waters, and the low carbon fixation activity associated with these waters, may be linked to the specific hydrological features encountered. In contrast, the marked reduction in the cyanobacteria and the abundance of picoeukaryotes along the north-south transect is more likely to be a result of the reduction in temperature through the frontal zone. Accepted: 17 July 1998  相似文献   

9.
The spatial distribution of species is affected by dispersal barriers, local environmental conditions and climate. However, the effect of species dispersal and their adaptation to the environment across geographic scales is poorly understood. To investigate the distribution of species from local to broad geographic scales, we sampled termites in 198 transects distributed in 13 sampling grids in the Brazilian Amazonian forest. The sampling grids encompassed an area of 271 500 km2 and included the five major biogeographic regions delimited by Amazonian rivers. Environmental data for each transect were obtained from local measurements and remote sensing. Similar to previous studies, termite species composition at the local scale was mostly associated with measures of soil texture and chemistry. In contrast, termite species composition at broad geographic scales was associated with soil nutrients, and the geographic position of the transects. Between 17 and 30% of the variance in termite species composition could be attributed exclusively to the geographic position of the transects, but could not be attributed to measured environmental variables or the presence of major rivers. Isolation by distance may have strong effects on termite species composition due to historic processes and the spatially structured environments along distinct geological formations of Amazonia. However, in contrast to many taxa in Amazonia, there is no evidence that major rivers are important barriers to termite dispersal.  相似文献   

10.
The distribution and species diversity of plant communities along a 600 km transect through the northeastern Tibetan Plateau (32°42′–35°07′ N, 101°02′–97°38′ E) with altitudes from 3255 to 4460 m are described. The transect started from the Youyi Bridge of Banma through Dari, Maqin and Maduo to Zaling Lake. The data from 47 plots along the transect are summarized and analyzed. The mean annual temperature, the mean annual rainfall and the length of growing season decreases from 2.6 to −4.5 °C, from 767.2 to 240.1 mm, from 210 to 140 days, respectively, along the transect from the southeastern Banma to northwestern Zaling Lake. The number of vascular plant species recorded in 47 plots is 242 including 2 tree, 34 shrub, 206 herb species. Main vegetation types on the transect from southeast to northwest are: Sabina convallium forest, Picea likiangensis forest, Pyracantha fortuneana + Spiraea alpina shrub, Hippophae neurocarpu shrub, Sibiraea angustata + Polygonum viviparum shrub, Stellera chamaejasme herb meadow, Potentilla fruticosa + Salix obscura + Carex sp. Shrub, Kobresia capillifolia meadow, P. froticosa + Kobresia humilis shrub, Caragana jubata + S. obscura shrub, Kobresia tibetica meadow, Kobresia pygmaea meadow, K. pygmaea + Stipa purpurea steppe meadow, Stipa purpurea steppe. Plant richness and diversity index all showed a decreasing trend with increasing of elevation along transect from southeast to northwest. Detailed information on altitudinal ranges and distribution of the alpine vegetation, vascular flora and environments over the alpine zone at northeastern Tibetan Plateau provides baseline records relevant to future assessment of probable effects of global climate changes.  相似文献   

11.
Mesozooplankton collected during five summer expeditions to the Arctic Ocean between 1987 and 1991 was analysed for regional patterns in biomass and species distribution, distinguishing between an epipelagic (0–100 m) and a deeper (0–500 m) layer. A total of 58 stations was sampled mainly in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean and in areas of the Greenland Sea, West Spitsbergen Current and Barents Sea. Results from the different expeditions were combined to create a transect extending from the Fram Strait across the Eurasian Basin into the Makarov Basin. Mesozooplankton dry mass in the upper 500 m decreased from 8.4 g m−2 in the West Spitsbergen Current to less than 2 g m−2 in the high-Arctic deep-sea basins. In the central Arctic Ocean, biomass was concentrated in the upper 100 m and was dominated by the large copepods Calanus hyperboreus and C. glacialis. In contrast, the mesozooplankton in the West Spitsbergen Current was more evenly distributed throughout the upper 500 m, with C. finmarchicus as the prevailing species. The distribution of abundant mesopelagic species reflected the hydrographic regime: the calanoid copepod Gaetanus tenuispinus and the hyperiid amphipod Themisto abyssorum were most abundant in the Atlantic inflow, while Scaphocalanus magnus was a typical component of the high-Arctic fauna. The relatively high mesozooplankton biomass and the occurrence of boreal-Atlantic species in the central Arctic Ocean are indicators for the import of organic material from allochthonous sources, especially from the northern North Atlantic. Hence, in spite of its enclosure by land masses, the Arctic Ocean is characterized by an exchange of water masses and organisms with the North Atlantic, and advection processes strongly influence the distribution of plankton species in this high-latitude ecosystem. Received: 18 December 1997 / Accepted: 11 April 1998  相似文献   

12.
The composition, abundance and vertical distribution of chaetognaths were analysed along a transect in the Weddell Sea during late spring. Three species were identified: Eukrohnia hamata (90.8%), Sagitta marri (6.4%) and S. gazellae (2.8%). Only juvenile stages were collected in the samples, a result related both to the type of sampling gear employed (mesh size: 100 μm) and the species' life-cycles. The vertical distributions showed that the juvenile stages of these species tended to aggregate at considerable depth (1000–500 m). It is postulated that this pattern may be related to the life-cycles of these species in association with seasonal Antarctic conditions, similar to the pattern postulated for krill and other polar crustaceans. Accepted: 10 July 2000  相似文献   

13.
A mathematical model is derived to describe the distributions of lengths of cytoskeletal actin filaments, along a 1 D transect of the lamellipod (or along the axis of a filopod) in an animal cell. We use the facts that actin filament barbed ends are aligned towards the cell membrane and that these ends grow rapidly in the presence of actin monomer as long as they are uncapped. Once a barbed end is capped, its filament tends to be degraded by fragmentation or depolymerization. Both the growth (by polymerization) and the fragmentation by actin-cutting agents are depicted in the model, which takes into account the dependence of cutting probability on the position along a filament. It is assumed that barbed ends are capped rapidly away from the cell membrane. The model consists of a system of discrete-integro-PDE's that describe the densities of barbed filament ends as a function of spatial position and length of their actin filament “tails”. The population of capped barbed ends and their trailing filaments is similarly represented. This formulation allows us to investigate hypotheses about the fragmentation and polymerization of filaments in a caricature of the lamellipod and compare theoretical and observed actin density profiles. Received: 19 May 2000 / Revised version: 12 March 2001 / Published online: 19 September 2001  相似文献   

14.
Dodd  M. B.  Lauenroth  W. K.  Welker  J. M. 《Oecologia》1998,117(4):504-512
We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs. Received: 23 December 1997 / Accepted: 16 September 1998  相似文献   

15.
The use of line transect methodology and portable thermal imaging for ground survey of wildlife should require a good knowledge of the behavioural response of the animals to the presence of an observer, in order to take into account the potential bias in density estimate caused by deviation from the assumption that distances are recorded at the initial position. We used ten fallow deer and eight wild boar fitted with radiocollars to investigate animals’ response during simulated nocturnal line transect surveys, carried out in a Mediterranean plain forest. The experiment consisted in radiolocating a focal animal before and after an observer walked a transect nearby (<100 m). Each transect line was followed using a Global Positioning System (GPS) navigator. We carried out a total of 64 trials on fallow deer and 57 on wild boar. Results showed that despite most of the animals moved significantly in response to the observer (mean ± standard error, wild boar—95.3 ± 10.0 m; fallow deer—149.6 ± 14.2 m), the flying patterns were different in the two species: the reaction of fallow deer turned out to be more intense and directional with respect to that showed by wild boar. Although these results sound explorative, the experiment attempted here, for the first time, is relevant for an appropriate design of nocturnal distance-sampling surveys and gives information about potential bias arising from animal’s behavioural response. We believe that these first results may foster more in-deep analyses which are now made possible with the adoption of GPS technology for animal location.  相似文献   

16.
Seasonal foraging activity and microhabitat selection by echidnas on the New England Tablelands was determined by monitoring the number and relative predominance of different types of digging activity on a 2 km × 50 m transect over a 12 month period. Digging was classified into four basic types: those into the soil surface (SOILDIGS); those at the base of logs, stumps or trees (LOGDIGS); those at the base of termite mounds; and those in the litter. SOILDIGS were most prevalent, accounting for 490 (74%) of the total 666 digging records. The number of SOILDIGS correlated with season and temperature, reaching a maximum of 11 ha?1 per month in late spring and a minimum of zero in winter. SOILDIGS were attributed to searches for ants and scarab beetle larvae. Approximately half of the SOILDIGS exposed ant nests or galleries, while the remainder were presumed to result from searches for the larvae of pasture dwelling scarab beetles, particularly Sericesthis spp. Scarab beetle larvae were absent from echidna scats collected during winter but occurred in 20% of scats collected during summer, LOGDIGS accounted for 157 digging records (24%) and were attributed to searches for ants and termites, LOGDIGS did not vary with season or climate, but the proportion of LOGDIGS that exposed ant or termite nests or galleries changed from 48% in winter to 5% in summer. The distribution and density of SOILDIGS and LOGDIGS along the transect correlated significantly with the availability of echidna shelter (or refuge) sites, in all seasons Some residual variation in digging activity was explained by the number and biomass of ants active on the soil surface, but not with any other direct or indirect measures of food availability. Seasonal changes in foraging activity by echidnas, and their apparent dependence on shelters, are interpreted in an energetic context as strategies for reducing predation and overcoming a period of increased energy demand and decreased food availability experienced during winter.  相似文献   

17.
The trachymedusa Ptychogastria polaris Allman, 1878 has been identified in seabed photographs from high-Arctic shelves and upper continental slopes off Northeast Greenland and in the northern Barents Sea. It was found to be a common epifaunal element, being present at 34 of 57 stations in 40- to 495-m depth and at 7 of 11 stations in 70- to 330-m depth, respectively. All specimens recorded in the photographs either sat directly at, or hovered very closely (≤ about 1 cm) over, the sea bed, indicating a primarily epibenthic life style of this hydrozoan species. The small-scale (i.e. within-station) distribution of medusae was rather patchy, with frequencies along photographic transects – consisting of 35–73 pictures distributed over seabed strips of 150- to 300-m length – varying from 1 to 58% off Northeast Greenland and from 1 to 34% in the Barents Sea. Absolute maximum density was 6 ind m−2, and station mean abundances ranged from 0.01 to 0.91 ind m−2 and from 0.01 to 0.52 ind m−2, respectively. Values tended to decrease with water depth, albeit significantly only off Northeast Greenland. Otherwise, no clear relationships to environmental conditions, such as geomorphology or near-bottom water hydrography, were detected. Circumstantial evidence suggests that seabed granulometry and potential food supply are important distribution determinants. However, further investigations are required to identify more stringently the key factors controlling the distribution of P. polaris. Received: 8 September 1997 / Accepted: 12 September 1997  相似文献   

18.
Eusociality has evolved independently at least twice among the insects: among the Hymenoptera (ants and bees), and earlier among the Isoptera (termites). Studies of swarm intelligence, and by inference, swarm cognition, have focused largely on the bees and ants, while the termites have been relatively neglected. Yet, termites are among the world’s premier animal architects, and this betokens a sophisticated swarm intelligence capability. In this article, I review new findings on the workings of the mound of Macrotermes which clarify how these remarkable structures work, and how they come to be built. Swarm cognition in these termites is in the form of “extended” cognition, whereby the swarm’s cognitive abilities arise both from interaction amongst the individual agents within a swarm, and from the interaction of the swarm with the environment, mediated by the mound’s dynamic architecture. The latter provides large scale “cognitive maps” which enable termite swarms to assess the functional state of their structure and to guide repair efforts where necessary. The crucial role of the built environment in termite swarm cognition also points to certain “swarm cognitive disorders”, where swarms can be pushed into anomalous activities by manipulating crucial structural and functional attributes of the termite system of “extended cognition.”  相似文献   

19.
Abstract. This paper deals with the spatial distribution pattern of the bird-dispersed plant Daphne gnidium in a 10-yr abandoned field under Mediterranean conditions. Colonization of Mediterranean old-fields by bird-dispersed plants is expected to fit a theoretical model in which (1) seed dispersal follows a negative exponential curve with the distance from the seed source and (2) seedlings are better established under perches (nucleation sensu Yarranton & Morrison 1974). However, post-dispersal processes such as seed predation, seed germination and seedling establishment are also spatial-dependent and can lead to spatial autocorrelation in the seedling distribution within an old-field. Results show that both processes in the model (curve of seed dispersal and nucleation) significantly explained the spatial distribution of the seedlings, but some spatial variance remained unexplained. The semivariogram with the statistical residuals of the model detected spatial dependence at small (< 20 m) and large (> 250 m) distance intervals, indicating that some mechanisms with spatial components, apart from the curve of seed dispersal and nucleation under perches, also determined the distribution of seedlings colonizing fields. At scales below 20-m intervals, semivariance increased indicating that similarity between plots is lost when distance increases between them. This pattern may be explained because the favourable micro-environmental conditions for establishment produced under perches could be extended towards neighbour plots where perches were absent. A flat semi-variogram between 20-m and 250-m intervals shows spatial independence along this range. From 250 m on, the semivariance increased again, indicating spatial dependence at coarse-scale. It is possible that the colonization model failed at this scale because different spatial processes to those included in the model (perch presence and distance to the shrubland) could be controlling seed colonization at coarse-scale.  相似文献   

20.
Roads and road-building are among the most important environmental impacts on forests near urban areas, but their effects on ecosystem processes and species distributions remain poorly known. Termites are the primary decomposer organisms in tropical forests and their spatial distribution is strongly affected by vegetation and soil structure. We studied the impacts of road construction on termite community structure in an Amazonian forest fragment near Manaus, Brazil. One leading question was whether the fragment under study was large enough to maintain the termite species pool present in nearby continuous forests. We also asked how soil moisture and canopy openness varied with proximity to roads, and whether these changes were associated with changes in termite species richness and composition in the fragment. While the forest fragment had a termite composition very similar to that of continuous forests, roads caused important changes in soil moisture and canopy openness, especially when close to forest edges. At distances of up to 81 m from roads, changes in soil moisture were significantly related to changes in termite species composition, but there was no correlation between canopy openness and species richness or composition. These results suggest that fragmentation caused by roads impacts termites in a different and less damaging manner than fragmentation caused by other kinds of degradation, and that even fragments bisected by roads can support very diverse communities and even undescribed taxa of termites. We conclude that a buffer zone should be established for conservation purposes in the reserves surrounded by roads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号