首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The ilvE gene of the Escherichia coli K-12 ilvGEDA operon, which encodes branched-chain amino acid aminotransferase [EC 2.6.1.42], was cloned. The nucleotide sequence of 1.5 kilobase pairs containing the gene was determined. The coding region of the ilvE gene contained 927 nucleotide residues and could encode 309 amino acid residues. The predicted molecular weight, amino acid composition and the sequence of the N-terminal 15 residues agreed with the enzyme data reported previously (Lee-Peng, F.-C., et al. (1979) J. Bacteriol. 139, 339-345). From the deduced amino acid sequence, the secondary structure was predicted.  相似文献   

2.
Recent results using proteases suggest that dexamethasone 21-mesylate (Dex-Mes) labeling of the rat hepatoma tissue culture (HTC) cell glucocorticoid receptor occurs at one or a few closely grouped cysteine residues (Simons, S.S., Jr. (1987) J. Biol. Chem. 262, 9669-9675). In this study, a more direct approach was used both to establish that only one cysteine is labeled by [3H]Dex-Mes and to identify the amino acid sequence containing this labeled cysteine. Various analytical procedures did not provide the purification of the extremely hydrophobic Staphylococcus aureus V8 protease digestion fragment that is required for unique amino acid sequencing data. Therefore, Edman degradation was performed on the limit protease digest mixtures which appeared to contain only one 3H-labeled peptide. These degradation experiments revealed the number of amino acid residues between the NH2 terminus of each peptide and the [3H]Dex-Mes-labeled cysteine. A comparison of these amino acid spacings with the published amino acid sequence of the HTC cell glucocorticoid receptor (Miesfeld, R., Rusconi, S., Godowski, P. J., Maler, B. A., Okret, S., Wikstom, A-C., Gustafsson, J-A., and Yamamoto, K. R. (1986) Cell 46, 389-399) indicated that the one cysteine labeled by [3H]Dex-Mes is Cys-656. Further analysis of the receptor sequence for the presence of the observed grouping of proteolytic cleavage sites, but without any preconditions as to which amino acid was labeled, gave Asp-122 and Cys-656 as the only two possibilities. Potential labeling of Asp-122 could be eliminated on the basis of immunological and genetic evidence. We, therefore, conclude that the single Dex-Mes-labeled site of the HTC cell glucocorticoid receptor has been identified as Cys-656. Since several lines of evidence indicate that [3H]Dex-Mes labeling of the receptor occurs in the steroid binding site, Cys-656 is the first amino acid which can be directly associated with a particular property of the glucocorticoid receptor.  相似文献   

3.
The aspartase gene (aspA) of Pseudomonas fluorescens was cloned and the nucleotide sequence of the 2,066-base-pair DNA fragment containing the aspA gene was determined. The amino acid sequence of the protein deduced from the nucleotide sequence was confirmed by N- and C-terminal sequence analysis of the purified enzyme protein. The deduced amino acid composition also fitted the previous amino acid analysis results well (Takagi et al. (1984) J. Biochem. 96, 545-552). These results indicate that aspartase of P. fluorescens consists of four identical subunits with a molecular weight of 50,859, composed of 472 amino acid residues. The coding sequence of the gene was preceded by a potential Shine-Dalgarno sequence and by a few promoter-like structures. Following the stop codon there was a structure which is reminiscent of the Escherichia coli rho-independent terminator. The G + C content of the coding sequence was found to be 62.3%. Inspection of the codon usage for the aspA gene revealed as high as 80.0% preference for G or C at the third codon position. The deduced amino acid sequence was 56.3% homologous with that of the enzyme of E. coli W (Takagi et al. (1985) Nucl. Acids Res. 13, 2063-2074). Cys-140 and Cys-430 of the E. coli enzyme, which had been assigned as functionally essential (Ida & Tokushige (1985) J. Biochem. 98, 793-797), were substituted by Ala-140 and Ala-431, respectively, in the P. fluorescens enzyme.  相似文献   

4.
The alpha- and beta-subunits of the GTP-binding protein (transducin) from cattle retina were cleaved with cyanogen bromide. 21 peptides covering 90-100% of the amino acid sequence of the alpha- and beta-subunits were isolated from the hydrolyzate. Cyanogen bromide peptides complete or partial amino acid sequence was determined, the results were compared with those by Numa and coworkers [1] and Lochrie et al. [2] at the primary structure of the transducin alpha-subunit deduced from the nucleotide sequence of the cDNA. The structure by Lochrie is shown to differ much from the true structure of the alpha-subunit; probably, the investigators isolated cDNA, corresponding to the gene for some GTP-binding protein homologous to transducin, but not to the gene for the transducin alpha-subunit. The Numa's structure also contains an error. The final primary structure of the transducin alpha-subunit is given. The protein polypeptide chain consists of 349 amino acid residues and has an acetylmethionine residue as the N-terminal residue.  相似文献   

5.
The nucleotide sequence of the aspartate aminotransferase [EC 2.6.1.1] structural gene, aspC, of Escherichia coli K-12 was determined. The coding region of the aspC gene contained 1,188 nucleotide residues and encoded 396 amino acid residues. The amino acid sequence deduced from the nucleotide sequence agreed perfectly with that of the protein recently determined for the aspartate aminotransferase of E. coli B (Kondo, K., Wakabayashi, S., Yagi, T., & Kagamiyama, H. (1984) Biochem. Biophys. Res. Commun. 122, 62-67).  相似文献   

6.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

7.
The amino acid sequence of jack bean urease has been determined. The protein consists of a single kind of polypeptide chain containing 840 amino acid residues. The subunit relative molecular mass calculated from the sequence is 90,770, indicating that urease is composed of six subunits. Out of 25 histidine residues in urease, 13 were crowded in the region between residues 479 and 607, suggesting that this region may contain the nickel-binding site. Limited tryptic digestion cleaved urease at two sites, Lys-128 and Lys-662. Proteolytic products were not dissociated and retained full enzymatic activity. Five tryptic peptides containing the reactive cysteine residues were isolated and characterized with the aid of sulfhydryl-specific reagents, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine and N-(7-dimethylamino-4-methyl-3-coumarinyl)-maleimide. The reactive cysteine residues were located at positions 59, 207, 592, 663, and 824. The possibility that Cys-59, Cys-207, Cys-663, and Cys-824 are involved in the urease activity of the enzyme has been eliminated. Cys-592, which is essential for enzymatic activity, is located in the above-mentioned histidine-rich region.  相似文献   

8.
Of the 20 cysteines of rat brain tubulin, some react rapidly with sulfhydryl reagents, and some react slowly. The fast reacting cysteines cannot be distinguished with [14C]iodoacetamide, N-[(14)C]ethylmaleimide, or IAEDANS ([5-((((2-iodoacetyl)amino)ethyl)amino) naphthalene-1-sulfonic acid]), since modification to mole ratios 1 cysteine/dimer always leads to labeling of 6-7 cysteine residues. These have been identified as Cys-305alpha, Cys-315alpha, Cys-316alpha, Cys-347alpha, Cys-376alpha, Cys-241beta, and Cys-356beta by mass spectroscopy and sequencing. This lack of specificity can be ascribed to reagents that are too reactive; only with the relatively inactive chloroacetamide could we identify Cys-347alpha as the most reactive cysteine of tubulin. Using the 3.5-A electron diffraction structure, it could be shown that the reactive cysteines were within 6.5 A of positively charged arginines and lysines or the positive edges of aromatic rings, presumably promoting dissociation of the thiol to the thiolate anion. By the same reasoning the inactivity of a number of less reactive cysteines could be ascribed to inhibition of modification by negatively charged local environments, even with some surface-exposed cysteines. We conclude that the local electrostatic environment of cysteine is an important, although not necessarily the only, determinant of its reactivity.  相似文献   

9.
10.
The nucleotide sequence of the pldB gene of Escherichia coli K-12, which codes for lysophospholipase L2 located in the inner membrane, was determined. The deduced amino acid sequence of lysophospholipase L2 contains 340 amino acid residues, resulting in a protein with a molecular weight of 38,934. It is characterized by a high content of arginine residues (36 out of 340 residues). The amino acid sequence near the NH2-terminus of the protein is composed of a large number of polar or charged amino acid residues, suggesting that this region cannot be a signal peptide. The hydropathy profile of the deduced amino acid sequence of lysophospholipase L2 was studied. Most of the region was rather hydrophilic, and there was no stretch of hydrophobic amino acid region, such as might be predicted to traverse the lipid bilayer. These results are consistent with the experimental observation that lysophospholipase L2 is extracted by salt solution from the membrane fraction, and it may be classified as a peripheral membrane protein. Computer analysis showed that there is no homology in amino acid sequences between lysophospholipase L2 and other extracellular phospholipases, as well as detergent-resistant phospholipase A, which is another membrane-bound phospholipase in E. coli and whose DNA sequence was determined (Homma, H., Kobayashi, T., Chiba, N., Karasawa, K., Mizushima, H., Kudo, I., Inoue, K., Ideka, H., Sekiguchi, M., & Nojima, S. (1984) J. Biochem. 96, 1655-1664). This is the first report of the primary structure of a lysophospholipase.  相似文献   

11.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase, which catalyzes hydride ion transfer between NAD(H) and NADP(H) coupled to proton translocation across the mitochondrial inner membrane, has been deduced from the corresponding cDNA. Two clones were isolated by screening a bovine lambda gt10 cDNA library, using two synthetic oligonucleotides and a cDNA restriction fragment as probes. The inserts together covered 3,105 base pairs of coding sequence, corresponding to 1.035 amino acid residues. However, the reading frame at the 5' end was still open. N-terminal sequence analysis of the isolated enzyme indicated the presence of 8 additional residues. Thus, the mature transhydrogenase appeared to have 1,043 amino acid residues and a calculated molecular weight of 109,212. The deduced amino acid sequence of the transhydrogenase contained the sequences of four tryptic peptides that had been isolated from the enzyme. Two of these were the peptides that had been used for construction of the oligonucleotide probes. The other two were tryptic peptides isolated after labeling the NAD-binding site of the transhydrogenase once with [3H]p-fluorosulfonylbenzoyl-5'-adenosine (FSBA), and another time with [14C]N,N'-dicyclohexylcarbodiimide. The FSBA-labeled peptide was found to be located immediately upstream of the [14C]N,N'-dicyclohexylcarbodiimide-labeled peptide, about 230 residues from the N terminus. One of the tryptic peptides used for oligonucleotide probe construction was the same as that labeled with [3H]FSBA when the NAD-binding site was protected from FSBA attack. This peptide, which might be at the NADP-binding site of the transhydrogenase, was located very near the C terminus of the enzyme. The central region of the transhydrogenase (residues 420-850) is highly hydrophobic and appears to comprise about 14 membrane-spanning segments. By comparison, the N- and the C-terminal regions of the enzyme, which contain the NAD- and the putative NADP-binding sites, respectively, are relatively hydrophilic and are probably located outside the mitochondrial inner membrane on the matrix side. There is considerable homology between the bovine enzyme and the Escherichia coli transhydrogenase (two subunits, alpha with Mr = 54,000 and beta with Mr = 48,700), whose amino acid sequence has been determined from the genes (Clarke, D.M., Loo, T.W., Gillam, S., and Bragg, P.D. (1986) Eur. J. Biochem. 158, 647-653).  相似文献   

12.
The primary structure of metallothioneins (MT) of a mollusc, the oyster Crassostrea virginica, was determined by molecular cloning and mass spectrometry of purified proteins. The cloning strategy included PCR amplification of the responsible cDNAs from total cDNA using completely degenerate oligonucleotides (derived from the N-terminal amino acid sequence) and oligo(dT)20 as primers. Primer extension off mRNA was used as an independent determination of the nucleotide sequence represented by the degenerate PCR primers. The deduced amino acid sequence was consistent with characteristics of class I MT. Twenty-one cysteine residues, were arranged in nine Cys-X-Cys motifs, five as Cys-Lys-Cys. A single Cys-X-X-Cys motif was also observed. Two MTs that differ only in the presence or absence of an N-acetyl group exist in this organism. Masses of tryptic peptides of purified MTs corresponded with those of peptides predicted from tryptic cleavages of the deduced amino acid sequence. Allowing for known N-terminal modifications, 96% of the deduced sequence was confirmed by mass spectrometry. Comparison (FASTA algorithm) of the primary structure of the oyster MTs with those of other species indicated a higher similarity with vertebrate MTs than with those of other invertebrates.  相似文献   

13.
We have previously purified the superoxide dismutase (SOD) of Mycobacterium bovis bacillus Calmette-Guerin (BCG), and there is no signal peptide necessary for protein exportation [S.K. Kang, Y.J. Jung, C.H. Kim, C.Y. Song, Extracellular and cytosolic iron superoxide dismutase from Mycobacterium bovis BCG, Clin. Diagn. Lab. Immunol. 5 (1998) 784-789]. In the present study, SOD gene of M. bovis BCG was cloned and expressed in Escherichia coli, and its complete nucleotide sequence and deduced amino acid composition were determined. The open reading frame from the GTG initiation codon was 621 base pair (bp) in length for the SOD structural gene. The ribosomal-binding sequences (GGAAGG) were 6-12 bp upstream from the initiation codon. The amino acid sequence, deduced from the nucleotide sequence, revealed that the SOD consists of 207 amino acids residues with a molecular weight of 22.8 kDa. The N-terminal amino acid sequence predicted from the nucleotide sequence showed that the structural gene of the SOD is not preceded by leader sequences. There were no cysteine residues in the deduced amino acid composition, indicating that the SOD does not consist of disulfide bonds. Analyses of both nucleotide and amino acid sequences of the SOD showed significant similarity to other pathogenic mycobacterial SODs. Furthermore, the results of fractionation and two-dimensional electrophoresis showed that SOD is also associated with cell membrane, suggesting that there might be a specific mechanism for exportation of SOD in M. bovis BCG as well as other pathogenic mycobacteria. Overexpressed SOD in E. coli was purified from the inclusion bodies, and the histidine tag was removed from the protein using enterokinase. Enzyme activity was then determined by gel staining analysis.  相似文献   

14.
We have isolated a cDNA encoding UDP-glucose pyrophosphorylase from a cDNA library of immature potato tuber using oligonucleotide probes synthesized on the basis of partial amino acid sequences of the enzyme. The cDNA clone contained a 1,758-base-pair insert including the complete message for UDP-glucose pyrophosphorylase with 1,431 base pairs. The amino acid sequence of the enzyme inferred from the nucleotide sequence consists of 477 amino acid residues. All the partial amino acid sequences determined protein-chemically [Nakano et al. (1989) J. Biochem. 106, 528-532] confirmed the primary structure of the enzyme. An N-terminal-blocked peptide was isolated from the proteolytic digest of the enzyme protein, and the blocking group was deduced to be an acetyl group by fast atom bombardment-mass spectrometry. On the basis of the predicted amino acid sequence (477 residues minus the N-terminal Met plus an acetyl group), the molecular weight of the enzyme monomer is calculated to be 51,783, which agrees well with the value determined by polyacrylamide gel electrophoresis. In the cDNA structure, the open-reading frame is preceded by a 125-base-pair noncoding region, which contains a sequence being homologous with the consensus sequence for plant genes, and is followed by a 174-base-pair noncoding sequence including a polyadenylation signal. Amino acid sequence comparisons revealed that the potato UDP-glucose pyrophosphorylase is homologous to the enzyme from slime mold, Dictyostelium discoideum, but not to ADP-glucose pyrophosphorylases from rice seed and Escherichia coli.  相似文献   

15.
16.
The nucleotide sequence of the ppc gene, the structural gene for phosphoenolpyruvate carboxylase [EC 4.1.1.31], of Escherichia coli K-12 was determined. The gene codes for a polypeptide comprising 883 amino acid residues with a calculated molecular weight of 99,061. The amino acid sequence deduced from the nucleotide sequence was entirely consistent with the protein chemical data obtained with the purified enzyme, including the NH2- and COOH-terminal sequences and amino acid composition. The coding region is preceded by two putative ribosome binding sites, and is followed closely by a good representative of rho-independent terminator. The codon usage in the ppc gene suggests a moderate expression of the gene. The secondary structure of the enzyme was predicted from the deduced amino acid sequence.  相似文献   

17.
Na+,K+-ATPase from pig kidney was specifically modified with a sulfhydryl fluorescent reagent, N-[p-(2-benzimidazolyl)phenyl]maleimide (BIPM), by pretreatment of N-ethylmaleimide. The preparation thus obtained retained 100% of initial Na+,K+-ATPase activity and contained 1 BIPM residue/alpha-chain, and it showed almost 2-fold larger fluorescence changes accompanying ATP hydrolysis than the previous preparations which retained 60% of initial activity and contained 3-4 BIPM residues/alpha-chain (Taniguchi, K., Suzuki, K., and Iida, S. (1982) J. Biol. Chem. 257, 10659-10667). Extensive trypsin (Sigma type I) treatment of the new preparation produced mainly two different fluorescent peptide peaks in both ion-exchange and reverse-phase chromatography. Amino acid sequence analysis of both peptides showed that they had the same common sequence, Ser-Tyr-X-Pro-Gly-Met-Gly-Val, except that the larger one contained Ala-Leu next to the Val residue. From the comparison of the amino acid sequence deduced from cDNA from sheep kidney (Shull, G. E., Schwartz, A., and Lingrel, J. B. (1985) Nature 316, 691-695), X was shown to correspond to Cys-964 of the alpha-chain in Na+,K+-ATPase. The data suggest that the microenvironment of the BIPM residue covalently bound to the sulfhydryl group of Cys-964 changes accompanying sequential appearance of reaction intermediates of Na+,K+-ATPase.  相似文献   

18.
The role of cysteine residues for structure and function of formaldehyde dehydrogenase from Pseudomonas putida was analysed by amino acid sequence comparison, homology-based structure modeling, site-directed mutagenesis, and chemical modification. Five out of seven cysteine residues found in the enzyme were concluded to coordinate with an active site zinc (Cys-46) and structural zinc atoms (Cys-97, -100, -103, and -111) from the sequence comparison with other Zn-containing medium-chain alcohol dehydrogenase homologues. The three-dimensional structure model based on the known structure of the horse liver E-type alcohol dehydrogenase (ADH) indicated that Cys-257 is located very far from the active site Zn and NAD+ binding region, suggesting that Cys-257 does not participate in the enzyme reaction. The structure also suggested that Cys-166 does not coordinate to active site Zn, but Asp-169 functions as a Zn-ligand, instead.  相似文献   

19.
S Chen  T D Lee  K Legesse  J E Shively 《Biochemistry》1986,25(19):5391-5395
We have identified the site labeled by arylazido-beta-alanyl-NAD+ (A3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)NAD+) in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase by microsequencing and fast atom bombardment mass spectrometry. This NAD+ photoaffinity analogue has been previously demonstrated to modify glyceraldehyde-3-phosphate dehydrogenase in a very specific manner and probably at the active site of the enzyme [Chen, S., Davis, H., Vierra, J. R., & Guillory, R. J. (1984) Biochem. Biophys. Stud. Proteins Nucleic Acids, Proc. Int. Symp., 3rd, 407-425]. The label is associated exclusively with a tryptic peptide that has the sequence Ile-Val-Ser-Asn-Ala-Ser-Cys-Thr-Thr-Asn. In comparison to the amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase from other species, this peptide is in a highly conserved region and is part of the active site of the enzyme. The cysteine residue at position seven was predominantly labeled and suggested to be the site modified by arylazido-beta-alanyl-NAD+. This cysteine residue corresponds to the Cys-149 in the pig muscle enzyme, which has been shown to be an essential residue for the enzyme activity. The present investigation clearly demonstrates that arylazido-beta-alanyl-NAD+ is a useful photoaffinity probe to characterize the active sites of NAD(H)-dependent enzymes.  相似文献   

20.
cDNA clones having a nucleotide sequence encoding a human monocyte chemotactic and activating factor (MCAF) were isolated and sequenced. The amino acid sequence deduced from the nucleotide sequence reveals the primary structure of the MCAF precursor to be composed of a putative signal peptide sequence of 23 amino acid residues and a mature MCAF sequence of 76 amino acid residues. The amino acid sequence of MCAF showed 25-55% homology with other members of an inducible cytokine family, including macrophage inflammatory protein and some putative polypeptide mediators known as JE, LD78, RANTES and TCA-3. This suggests that MCAF is a member of family of factors involved in immune and inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号