首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capacitative calcium entry or store-operated calcium entry in nonexcitable cells is a process whereby the activation of calcium influx across the plasma membrane is signaled by depletion of intracellular calcium stores. Transient receptor potential (TRP) proteins have been proposed as candidates for store-operated calcium channels. Human TRPC3 (hTRPC3), an extensively studied member of the TRP family, is activated through a phospholipase C-dependent mechanism, not by store depletion, when expressed in HEK293 cells. However, store depletion by thapsigargin is sufficient to activate hTRPC3 channels when expressed in DT40 avian B-lymphocytes. To gain further insights into the differences between hTRPC3 channels generated in these two expression systems and further understand the role of hTRPC3 in capacitative calcium entry, we examined the effect of two well characterized inhibitors of capacitative calcium entry, Gd3+ and 2-aminoethoxydiphenyl borane (2APB). We confirmed that in both DT40 cells and HEK293 cells, 1 microm Gd3+ or 30 microm 2APB completely blocked calcium entry due to receptor activation or store depletion. In HEK293 cells, 1 microm Gd3+ did not block receptor-activated hTRPC3-mediated cation entry, whereas 2APB had a partial (approximately 60%) inhibitory effect. Interestingly, store-operated hTRPC3-mediated cation entry in DT40 cells was also partially inhibited by 2APB, whereas 1 microm Gd3+ completely blocked store-operated hTRPC3 activity in these cells. Furthermore, the sensitivity of store-operated hTRPC3 channels to Gd3+ in DT40 cells was similar to the endogenous store-operated channels, with essentially 100% block of activity at concentrations as low as 0.1 microm. Finally, Gd3+ has a rapid inhibitory effect when added to fully developed hTRPC3-mediated calcium entry, suggesting a direct action of Gd3+ on hTRPC3 channels. The distinct action of these inhibitors on hTRPC3-mediated cation entry in these two cell types may result from their different modes of activation and may also reflect differences in basic channel structure.  相似文献   

2.
We examined the activation and regulation of calcium release-activated calcium current (I(crac)) in RBL-1 cells in response to various Ca(2+) store-depleting agents. With [Ca(2+)](i) strongly buffered to 100 nM, I(crac) was activated by ionomycin, thapsigargin, inositol 1,4,5-trisphosphate (IP(3)), and two metabolically stable IP(3) receptor agonists, adenophostin A and L-alpha-glycerophospho-D-myoinositol-4,5-bisphosphate (GPIP(2)). With minimal [Ca(2+)](i) buffering, with [Ca(2+)](i) free to fluctuate I(crac) was activated by ionomycin, thapsigargin, and by the potent IP(3) receptor agonist, adenophostin A, but not by GPIP(2) or IP(3) itself. Likewise, when [Ca(2+)](i) was strongly buffered to 500 nM, ionomycin, thapsigargin, and adenophostin A did and GPIP(2) and IP(3) did not activate detectable I(crac). However, with minimal [Ca(2+)](i) buffering, or with [Ca(2+)](i) buffered to 500 nM, GPIP(2) was able to fully activate detectable I(crac) if uptake of Ca(2+) intracellular stores was first inhibited. Our findings suggest that when IP(3) activates the IP(3) receptor, the resulting influx of Ca(2+) quickly inactivates the receptor, and Ca(2+) is re-accumulated at sites that regulate I(crac). Adenophostin A, by virtue of its high receptor affinity, is resistant to this inactivation. Comparison of thapsigargin-releasable Ca(2+) pools following activation by different IP(3) receptor agonists indicates that the critical regulatory pool of Ca(2+) may be very small in comparison to the total IP(3)-sensitive component of the endoplasmic reticulum. These findings reveal new and important roles for IP(3) receptors located on discrete IP(3)-sensitive Ca(2+) pools in calcium feedback regulation of I(crac) and capacitative calcium entry.  相似文献   

3.
Putney JW 《Cell calcium》2007,42(2):103-110
Activation of phospholipase C by G-protein-coupled receptors results in release of intracellular Ca(2+) and activation of Ca(2+) channels in the plasma membrane. The intracellular release of Ca(2+) is signaled by the second messenger, inositol 1,4,5-trisphosphate. Ca(2+) entry involves signaling from depleted intracellular stores to plasma membrane Ca(2+) channels, a process referred to as capacitative calcium entry or store-operated calcium entry. The electrophysiological current associated with capacitative calcium entry is the calcium-release-activated calcium current, or I(crac). In the 20 years since the inception of the concept of capacitative calcium entry, a variety of activation mechanisms have been proposed, and there has been considerable interest in the possibility of transient receptor potential channels functioning as store-operated channels. However, in the past 2 years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 (and possibly Stim2) and the Orai proteins. Activation of store-operated channels involves an endoplasmic reticulum Ca(2+) sensor called Stim1. Stim1 acts by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not appear to translocate into the plasma membrane. Stim1, either directly or indirectly, signals to plasma membrane Orai proteins which constitute pore-forming subunits of store-operated channels.  相似文献   

4.
We examined the roles of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) in calcium signaling using DT40 B lymphocytes, and a variant lacking the three IP3R isoforms (IP3R-KO). In wild-type cells, B cell receptor (BCR) stimulation activates a cation entry route that exhibits significantly greater permeability to Ba2+ than does capacitative calcium entry. This cation entry is absent in IP3R-KO cells. Expression of the type-3 IP3R (IP3R-3) in the IP3R-KO cells rescued not only agonist-dependent release of intracellular Ca2+, but also Ba2+ influx following receptor stimulation. Similar results were obtained with an IP3R-3 mutant carrying a conservative point mutation in the selectivity filter region of the channel (D2477E); however, an IP3R-3 mutant in which this same aspartate was replaced by alanine (D2477A) failed to restore either BCR-induced Ca2+ release or receptor-dependent Ba2+ entry. These results suggest that in DT40 B lymphocytes, BCR stimulation activates a novel cation entry across the plasma membrane that depends upon, or is mediated by, fully functional IP3R.  相似文献   

5.
Phospholipase C signaling stimulates Ca2+ entry across the plasma membrane through multiple mechanisms. Ca2+ store depletion stimulates store-operated Ca2+-selective channels, or alternatively, other phospholipase C-dependent events activate Ca2+-permeable non-selective cation channels. Transient receptor potential 7 (TRPC7) is a non-selective cation channel that can be activated by both mechanisms when ectopically expressed, but the regulation of native TRPC7 channels is not known. We knocked out TRPC7 in DT40 B-cells, which expresses both forms of Ca2+ entry. No difference in the store-operated current I(crac) was detected between TRPC7-/- and wild-type cells. Wild-type cells demonstrated nonstore-operated cation entry and currents in response to activation of the B-cell receptor or protease-activated receptor 2, intracellular dialysis with GTPgammaS, or application of the synthetic diacylglycerol oleyl-acetyl-glycerol. These responses were absent in TRPC7-/- cells but could be restored by transfection with human TRPC7. In conclusion, in B-lymphocytes, TRPC7 appeared to participate in the formation of ion channels that could be activated by phospholipase C-linked receptors. This represents the first demonstration of a physiological function for endogenous TRPC7 channels.  相似文献   

6.
Store-operated calcium entry (SOCE) is required for polymorphonuclear neutrophil (PMN) activation in response to G protein-coupled agonists. Some immunocytes express proteins homologous to the Drosophila transient receptor potential gene (trp) calcium channel. TRP proteins assemble into heterotetrameric ion channels and are known to support SOCE in overexpression systems, but the evidence that TRP proteins support SOCE and are functionally important in wild-type cells remains indirect. We therefore studied the expression and function of TRP proteins in primary human PMN. TRPC1, TRPC3, TRPC4, and TRPC6 were all expressed as mRNA as well as membrane proteins. Immunofluorescence microscopy demonstrated localization of TRPC1, TRPC3, and TRPC4 to the PMN cell membrane and their internalization after cytoskeletal reorganization by calyculin A (CalyA). Either TRPC internalization by CalyA or treatment with the inositol triphosphate receptor inhibitor 2-aminoethoxydiphenyl borane resulted in the loss of PMN SOCE. Cytochalasin D (CytoD) disrupts actin filaments, thus preventing cytoskeletal reorganization, and pretreatment with CytoD rescued PMN SOCE from inhibition by CalyA. Comparative studies of CytoD and 2-aminoethoxydiphenyl borane inhibition of PMN cationic entry after thapsigargin or platelet-activating factor suggested that SOCE occurs through both calcium-specific and nonspecific pathways. Taken together, these studies suggest that the multiple TRPC proteins expressed by human PMN participate in the formation of at least two store-operated calcium channels that have differing ionic permeabilities and regulatory characteristics.  相似文献   

7.
Store-operated channels (SOCs) provide an important means for mediating longer-term Ca(2+) signals and replenishment of Ca(2+) stores in a multitude of cell types. However, the coupling mechanism between endoplasmic reticulum stores to activate plasma membrane SOCs remains unknown. In DT40 chicken B lymphocytes, the permeant inositol trisphosphate receptor (InsP(3)R) modifier, 2-aminoethoxydiphenyl borate (2-APB), was a powerful activator of store-operated Ca(2+) entry between 1-10 microm. 2-APB activated authentic SOCs because the entry was totally selective for Ca(2+) (no detectable entry of Ba(2+) or Sr(2+) ions), and highly sensitive to La(3+) ions (IC(50) 30-100 nm). To assess the role of InsP(3)Rs in this response, we used the DT40 triple InsP(3)R-knockout (ko) cell line, DT40InsP(3)R-ko, in which the absence of full-length InsP(3)Rs or InsP(3)R fragments was verified by Western analysis using antibodies cross-reacting with N-terminal epitopes of all three chicken InsP(3)R subtypes. The 2-APB-induced activation of SOCs was identical in the DT40InsP(3)R-ko, cells indicating InsP(3)Rs were not involved. With both wild type (wt) and ko DT40 cells, 2-APB had no effect on Ca(2+) entry in store-replete cells, indicating that its action was restricted to SOCs in a store-coupled state. 2-APB induced a robust activation of Ca(2+) release from stores in intact DT40wt cells but not in DT40InsP(3)R-ko cells, indicating an InsP(3)R-mediated effect. In contrast, 2-APB blocked InsP(3)Rs in permeabilized DT40wt cells, suggesting that the stimulatory action of 2-APB was restricted to functionally coupled InsP(3)Rs in intact cells. Uncoupling of ER/PM interactions in intact cells by calyculin A-induced cytoskeletal rearrangement prevented SOC activation by store-emptying and 2-APB; this treatment completely prevented 2-APB-induced InsP(3)R activation but did not alter InsP(3)R activation mediated by phospholipase C-coupled receptor stimulation. The results indicate that the robust bifunctional actions of 2-APB on both SOCs and InsP(3)Rs are dependent on the coupled state of these channels and suggest that 2-APB may target the coupling machinery involved in mediating store-operated Ca(2+) entry.  相似文献   

8.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

9.
Mechanism of store-operated calcium entry   总被引:3,自引:0,他引:3  
Activation of receptors coupled to the phospholipase C/IP3 signalling pathway results in a rapid release of calcium from its intracellular stores, eventually leading to depletion of these stores. Calcium store depletion triggers an influx of extracellular calcium across the plasma membrane, a mechanism known as the store-operated calcium entry or capacitative calcium entry. Capacitative calcium current plays a key role in replenishing calcium stores and activating various physiological processes. Despite considerable efforts, very little is known about the molecular nature of the capacitative channel and the signalling pathway that activates it. This review summarizes our current knowledge about store operated calcium entry and suggests possible hypotheses for its mode of activation.  相似文献   

10.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. Although SOCs have not been molecularly identified, transient receptor potential (TRP) channels share a number of operational parameters with SOCs. The question of whether activation of SOCs and TRP channels is mediated by the inositol 1,4,5-trisphosphate receptor (InsP(3)R) was examined using the permeant InsP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB) in both mammalian and invertebrate systems. In HEK293 cells stably transfected with human TRPC3 channels, the actions of 2-APB to block carbachol-induced InsP(3)R-mediated store release and carbachol-induced Sr(2+) entry through TRPC3 channels were both reversed at high agonist levels, suggesting InsP(3)Rs mediate TRPC3 activation. However, electroretinogram recordings of the light-induced current in Drosophila revealed that the TRP channel-mediated responses in wild-type as well as trp and trpl mutant flies were all inhibited by 2-APB. This action of 2-APB is likely InsP(3)R-independent since InsP(3)Rs are dispensable for the light response. We used triple InsP(3)R knockout DT40 chicken B-cells to further assess the role of InsP(3)Rs in SOC activation. (45)Ca(2+) flux analysis revealed that although DT40 wild-type cells retained normal InsP(3)Rs mediating 2-APB-sensitive Ca(2+) release, the DT40InsP(3)R-k/o cells were devoid of functional InsP(3)Rs. Using intact cells, all parameters of Ca(2+) store function and SOC activation were identical in DT40wt and DT40InsP(3)R-k/o cells. Moreover, in both cell lines SOC activation was completely blocked by 2-APB, and the kinetics of action of 2-APB on SOCs (time dependence and IC(50)) were identical. The results indicate that (a) the action of 2-APB on Ca(2+) entry is not mediated by the InsP(3)R and (b) the effects of 2-APB provide evidence for an important similarity in the function of invertebrate TRP channels, mammalian TRP channels, and mammalian store-operated channels.  相似文献   

11.
The TRPC3 channel, an intensively studied member of the widely expressed transient receptor potential (TRP) family, is a Ca(2+)-conducting channel activated in response to phospholipase C-coupled receptors. Despite scrutiny, the receptor-induced mechanism to activate TRPC3 channels remains unclear. Evidence indicates TRPC3 channels interact directly with intracellular inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) and that channel activation is mediated through coupling to InsP(3)Rs. TRPC3 channels were expressed in DT40 chicken B lymphocytes in which all three InsP(3)R genes were deleted (DT40InsP(3)R-k/o). Endogenous B-cell receptors (BCR) coupled through Syk kinase to phospholipase C-gamma (PLC-gamma) activated the expressed TRPC3 channels in both DT40w/t and DT40InsP(3)R-k/o cells. The diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) also activated TRPC3 channels independently of InsP(3)Rs. BCR-induced TRPC3 activation was blocked by the PLC enzymic inhibitor, U-73122, and also blocked by wortmannin-induced PLC substrate depletion. Neither U-73122 nor wortmannin modified either OAG-induced TRPC3 activation or store-operated channel activation in DT40 cells. Cotransfection of cells with both G protein-coupled M5 muscarinic receptors and TRPC3 channels resulted in successful M5 coupling to open TRPC3 channels mediated by PLC-beta. We conclude that TRPC3 channels are activated independently of InsP(3)Rs through DAG production resulting from receptor-mediated activation of either PLC-gamma or PLC-beta.  相似文献   

12.
Modulation on the duration of intracellular Ca(2+) transients is essential for B-cell activation. We have previously shown that extracellular-signal-regulated kinase (ERK) can phosphorylate inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1) at serine 436 and regulate its calcium channel activity. Here we investigate the potential physiological interaction between ERK and IP(3)R1 using chicken DT40 B-cell line in which different mutants are expressed. The interaction between ERK and IP(3)R1 is confirmed by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. This constitutive interaction is independent of either ERK kinase activation or IP(3)R1 phosphorylation status. Back phosphorylation analysis further shows that type 1 IP(3)R (IP(3)R1) is phosphorylated by ERK in anti-IgM-activated DT40 cells. Finally, our data show that the phosphorylation of Ser 436 in the IP(3)-binding domain of IP(3)R1 leads to less Ca(2+) release from endoplasmic reticulum (ER) microsomes and accelerates the declining of calcium increase in DT40 cells in response to anti-IgM stimulation.  相似文献   

13.
In the phospholipase C signaling system, Ca(2+) is mobilized from intracellular stores by an action of inositol 1,4,5-trisphosphate. The depletion of intracellular calcium stores activates a calcium entry mechanism at the plasma membrane called capacitative calcium entry. The signal for activating the entry is unknown but likely involves either the generation or release, or both, from the endoplasmic reticulum of some diffusible signal. Recent research has focused on mammalian homologues of the Drosophila TRP protein as potential candidates for capacitative calcium entry channels. This review summarizes current knowledge about the nature of capacitative calcium entry signals, as well as the potential role of mammalian TRP proteins as capacitative calcium entry channel molecules.  相似文献   

14.
Little is known about the regulation of cytosolic calcium Ca(2+) levels ([Ca(2+)](i)) in breast cancer cells. We investigated the existence of capacitative calcium entry (CCE) in the tumorigenic cell line MCF-7 and its responsiveness to ATP. MCF-7 cells express purinergic receptors as well as estrogen receptors (ER). Depletion of calcium stores with thapsigargin (TG, 500 nM) or ATP (10 microM) in the absence of extracellular Ca(2+), resulted in a rapid and transient elevation in [Ca(2+)](i). After recovery of basal levels, Ca(2+) readmission (1.5 mM) to the medium increased Ca(2+) influx (twofold over basal), reflecting pre-activation of a CCE pathway. Cells pretreated with TG were unable to respond to ATP, thus indicating that the same Ca(2+) store is involved in their response. Moreover, IP(3)-dependent ATP-induced calcium mobilization and CCE were completely blocked using compound U-73122, an inhibitor of phospholipase C. Compound 2-APB (75 microM) and Gd(3+) (10 microM), antagonists of the CCE pathway, completely prevented ATP-stimulated capacitative Ca(2+) entry. CCE in MCF-7 cells was highly permeable to Mn(2+) and to the Ca(2+) surrogate Sr(2+). Mn(2+) entry sensitivity to Gd(3+) matched that of the Ca(2+) entry pathway. 17Beta-estradiol blocked ATP-induced CCE, but was without effect on TG-induced CCE. Besides, the estrogen blockade of the ATP-induced CCE was completely abolished by preincubation of the cells with an ER monoclonal antibody. ER alpha immunoreactivity could also be detected in a purified plasma membrane fraction of MCF-7 cells. These results represent the first evidence on the operation of a ATP-responsive CCE pathway in MCF-7 cells and also indicate that 17beta-estradiol interferes with this mechanism by acting at the cell surface level.  相似文献   

15.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

16.
Membranes prepared from DMSO-differentiated HL60 cells labeled with [3H]inositol hydrolyze polyphosphoinositides in a Ca2+-dependent manner, generating inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3). Incubation of membranes with GTP or GTP gamma S reduces the concentration of Ca2+ required for activation. This nucleotide effect is potentiated by formyl-Met-Leu-Phe (FMLP). Pertussis toxin inhibits FMLP-induced augmentation, but not the induction of IP2/IP3 formation by GTP or GTP gamma S. These results suggest that differentiated HL60 cells contain a membrane-associated phospholipase C that degrades polyphosphoinositides and that activation of this enzyme is mediated by at least two guanine nucleotide binding proteins, one of which is linked to FMLP receptors and is pertussis toxin sensitive.  相似文献   

17.
Kumari S  Dash D 《FEBS letters》2011,585(14):2345-2351
Several studies have indicated the existence of direct effects of melatonin on platelets. Here we show that, melatonin at high concentration is capable of significantly raising platelet intracellular calcium even in the absence of an agonist. The effect of melatonin on platelets was abolished by luzindole, a melatonin receptor blocker, and rotenone, while it was unaffected by cell-permeable antagonists of either inositol 1,4,5-trisphosphate (IP(3)) receptor, phospholipase C (PLC), or bafilomycin A1, which discharges acidic calcium stores. Melatonin-induced manganese entry provided evidence for activation of bivalent cation entry. Thus, our data suggest that melatonin evoked the elevation of platelet intracellular calcium through depletion of mitochondrial Ca(2+) stores and store-operated calcium entry (SOCE), while the action was independent of the PLC-IP(3) axis.  相似文献   

18.
Previous studies have demonstrated that stimulation of phospholipase C-linked G-protein-coupled receptors, including muscarinic M1 and M3 receptors, increases the release of the soluble form of amyloid precursor protein (sAPPalpha) by alpha-secretase cleavage. In this study, we examined the involvement of capacitative Ca2+ entry (CCE) in the regulation of muscarinic acetylcholine receptor (mAChR)-dependent sAPPalpha release in neuroblastoma SH-SY5Y cells expressing abundant M3 mAChRs. The sAPPalpha release stimulated by mAChR activation was abolished by EGTA, an extracellular Ca2+ chelator, which abolished mAChR-mediated Ca2+ influx without affecting Ca2+ mobilization from intracellular stores. However, mAChR-mediated sAPPalpha release was not inhibited by thapsigargin, which increases basal [Ca2+]i by depletion of Ca2+ from intracellular stores. While these results indicate that the mAChR-mediated increase in sAPPalpha release is regulated largely by Ca2+ influx rather than by Ca2+ mobilization from intracellular stores, we further investigated the Ca2+ entry mechanisms regulating this phenomenon. CCE inhibitors such as Gd3+, SKF96365, and 2-aminoethoxydiphenyl borane (2-APB), dose dependently reduced both Ca2+ influx and sAPPalpha release stimulated by mAChR activation, whereas inhibition of voltage-dependent Ca2+ channels, Na+/Ca2+ exchangers, or Na+-pumps was without effect. These results indicate that CCE plays an important role in the mAChR-mediated release of sAPPalpha.  相似文献   

19.
The present study was conducted on human Jurkat T-cell lines in order to elucidate the role of phospholipase A2 in capacitative calcium entry. We have employed thapsigargin (TG) that induces increases in [Ca2+]i by emptying the calcium pool of endoplasmic reticulum, followed by capacitative calcium entry. We designed a Ca2+ free/Ca2+ reintroduction (CFCR) protocol for the experiments, conducted in Ca2+-free medium. By employing CFCR protocol, we observed that addition of exogenous arachidonic acid (AA) stimulated TG-induced capacitative calcium influx. The liberation of endogenous AA and its autocrine action seems to be implicated during TG-induced capacitative calcium influx: TG potentiates the induction of constitutively expressed mRNA of four PLA2 isoforms (type 1B, IV, V, VI), the inhibitors of the three PLA2 isotypes (type 1B, V, VI) inhibit TG-induced release of [3H]AA into the extracellular medium, and finally, these PLA2 inhibitors do curtail TG-stimulated capacitative calcium entry in these cells. These results suggest that stimulation of three isoforms of PLA2 by thapsigargin liberates free AA that, in turn, induces capacitative calcium influx in human T-cells.  相似文献   

20.
Binding of chemoattractants to specific cell surface receptors on human polymorphonuclear leukocytes (PMNs) initiates a variety of biologic responses, including directed migration (chemotaxis), release of superoxide anions, and lysosomal enzyme secretion. Chemoattractant receptors belong to a large class of receptors which utilize the hydrolysis of polyphosphoinositides to initiate Ca2+ mobilization and cellular activation. Receptor occupancy leads to phospholipase C-mediated hydrolysis of polyphosphoinositol 4,5-bisphosphate (PIP2) yielding inositol 1,4,5-trisphosphate (IP3) and 1,2 sn-diacylglycerol (DAG). These products synergize to initiate cell activation via calcium mobilization (IP3) and protein kinase C activation (DAG). Pertussis toxin, which ADP-ribosylates and inactivates some GTP binding proteins (G proteins), abolishes all chemoattractant-induced responses, including Ca2+ mobilization, IP3 and DAG production, enzyme secretion, superoxide production and chemotaxis. Direct evidence for chemoattractant receptor: G protein coupling was obtained using PMN membrane preparations which contain a Ca2+-sensitive phospholipase C. Hydrolysis of polyphosphoinositides at resting intracellular Ca2+ levels (100 nm) was only observed when the membranes were stimulated with the chemoattractant N-formyl-methyl-leucyl-phenylalanine (fMet-Leu-Phe) in the presence of GTP. Myeloid cells contain two distinct pertussis toxin substrates of similar molecular weight (40 and 41 kD). The 41 kD substrate resembles Gi, whereas a 40 kD substrate is physically associated with a partially purified fMet-Leu-Phe receptor preparation and may therefore represent a novel G protein involved in chemoattractant-stimulated responses. Metabolism of 1,4,5-IP3 to inositol proceeds via two distinct pathways in PMNs: (1) degradation to 1,4-IP2 and 4-IP1 or (2) conversion to 1,3,4,5-IP4, 1,3,4-IP3, 3,4-IP2 and 3-IP1. Initial formation (0-30 s) of 1,4,5-IP3 and DAG occurs at ambient intracellular Ca2+ levels, whereas formation of 1,3,4-IP3 and a second sustained phase of DAG production (30 s-10 min) require elevated cytosolic Ca2+ influx. The later peak of DAG, which is not derived from phosphoinositides, appears to be required for stimulation of respiratory burst activity. Products formed during activation can feed back to attenuate chemoattractant receptor-mediated stimulation of phospholipase C by uncoupling receptor-G protein-phospholipase C interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号