首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A microsomal enzyme preparation from the yeast Saccharomyces cerevisiae catalyzes the transfer of mannosyl units from GDPmannose to mannose and a number of mannose-containing oligosaccharides and glycosides whereby different glycosidic bonds are formed.2. Of the compounds tested besides mannose, only those containing an α-linked mannosyl unit at the nonreducing position of their moleculae were effective as receptors. Monodeoxyanalogues of mannose as well as α-mannose phosphates did not serve as receptors in the above reaction.3. The structure of the product formed with mannose as receptor was determined to be O-α-D-mannosyl-(1→2)-mannose; with αMan(1→Man(1→6)mannose as the acceptor, the product was αMan(1→6)αMan(1→6)mannose and with αMan-(1→2)mannose the product was tentatively characterized as a mixture of αMan-(1→3)αMan(1→2)mannose and αMan(1→2)αMan(1→2)mannose.4. The enzymes catalyzing the formation of different types of glycosidic bonds differed in their acceptor specificity, pH-activity curves and rates of heat denaturation.5. Radioactive disaccharids were unable to enter the mannan protein molecule in the cell-free system while free radioactive mannose did incorporate into polysacchride to a minor extent under the same conditions.  相似文献   

2.
The carbohydrate part of a proteo-heteroglycan from Piricularia oryzae was further studied by chemical and immunological methods. Acetolysis studies of the proteo-heteroglycan and exo-alpha-D-mannanase resistant core showed a (1 leads to 6) mannan back-bone structure with side chains composed of one to four mannose units, and some of which are terminated by D-glucose or D-galactofuranose. The mode of attachment of the terminal glucose was characterized to be alphaGlc(1 leads to 6)Man by inhibition reaction with oligosaccharides. Rabbit anti-serum formed against P. oryzae cells had three specificities, the first one for alphaGlc(1 leads to 6)alphamannosyl, the second one for alphaMan(1 leads to 3)alphamannosyl, and the last one for alphaGal-f(1 leads to 2)alphamannosyl residues. The most immunodominant side chain structure of the P. oryzae heteroglycan was shown to be alphaGlc(1 leads to 6)alphaMan(1 leads to 2)alphaMan(1 leads to 2)Man.  相似文献   

3.
M H Gold  H J Hahn 《Biochemistry》1976,15(9):1808-1814
Particulate membrane preparations from Neurospora crassa incorporated mannose from GDP-[14C] mannose into endogenous lipid and particulate protein acceptors. Synthesis of the mannosyl lipid is reversible in the presence of GDP. Chemical and chromatographic characterization of the mannosyl lipid suggest that it is a mannosylphosphorylpolyisoprenol. The other endogenous acceptor was precipitated by trichloracetic acid. Gel filtration and electrophoresis studies before and after treatment with proteolytic enzymes indicate that the second acceptor is a glycoprotein(s). beta Elimination studies on the mannosyl protein formed from GDP-[14C] mannose with Mg2+ in the reaction mixture or formed from mannosyl lipid indicate thad with the peptide chain. Several lines of evidence indicate that in Neurospora crassa the mannosyl lipid is an obligatory intermediate in the in vitro mannosylation of the protein. (a) At 15 degrees C the initial formation of the mannosyl lipid is faster than the initial formation of the mannosyl protein. (b) Exogenous partially purified mannosyl lipid can function as a mannosyl donor for the synthesis of the mannosyl protein. This reaction was also dependent on a divalent metal. The rate of this reaction was optimal at a concentration of Triton X-100 which effectively inhibited the transfer of mannose from GDP-[14C] mannose to lipid and protein, indicating that GDP-mannose was not an intermediate in the transfer of mannose from lipid to protein. The mannosyl protein formed in this reaction was indistinguishable by several criteria from the mannosyl protein formed from GDP-[14C] mannose and Mg2+. (c) The effect of a chase with an excess of unlabeled GDP-mannose on the incorporation of mannose into endogenous acceptors was immediate cessation of the synthesis and subsequent turnover of the mannosyl lipid; in contrast, however, incorporation of mannose into protein continued and was proportional to the loss of mannose from the mannosyl lipid.  相似文献   

4.
The dolichyl-P-mannose:dolichyl-PP-heptasaccharide alpha-mannosyltransferase (2.4.1.130), which catalyzes the transfer of mannose from dolichyl-P-mannose to the Man5(GlcNAc)2-PP-dolichol acceptor glycolipid, was solubilized from pig aorta microsomes with 0.5% NP-40 and purified 985-fold by a variety of conventional methods. The partially purified enzyme had a pH optimum of 6.5 and required Ca2+, at an optimum concentration of 8-10 mM, for activity. Mn2+ was only 20% as effective as Ca2+, and Mg2+ was inhibitory. The mannosyltransferase activity was also inhibited by the addition of EDTA to the enzyme, but this inhibition was fully reversible by the addition of Ca2+. The enzyme was quite specific for dolichyl-P-mannose as the mannosyl donor and Man5(GlcNAc)2-PP-dolichol as the mannosyl acceptor. The Km values for dolichyl-P-mannose and the acceptor lipid Man5(GlcNAc)2-PP-dolichol were 1.8 and 1.6 microM. On Bio-Gel P-4 columns and by HPLC, the radiolabeled oligosaccharide formed during incubation of dolichyl-P-[14C]mannose and unlabeled Man5(GlcNAc)2-PP-dolichol with the purified enzyme behaved like Man6(GlcNAc)2. This octasaccharide was susceptible to digestion by endoglucosaminidase H, indicating that the newly added mannose was attached to the 6-linked mannose in an alpha 1,3-linkage. This linkage was further confirmed by acetolysis of the oligosaccharide product [i.e., Man6(GlcNAc)2], which gave a labeled disaccharide as the major product (greater than 90%).  相似文献   

5.
Incubation of a membrane fraction from Mycobacterium smegmatis cells with GDP-mannose and free mannose at pH 7 in presence of Mg2+ ions resulted in the formation of a series of alpha 1----6-linked mannooligosaccharides with up to 12 mannoses. The membrane fraction also catalyzed incorporation of mannose from GDP-mannose into a lipid-soluble product with the properties of a mannosyl phospholipid. A similar product was formed by the incubation of the membrane protein with decaprenol phosphate and GDP-mannose, and it was characterized as beta-mannosylphosphoryldecaprenol. A pulse-chase experiment suggested that the mannosyl phospholipid was an intermediate in alpha 1----6-linked mannooligosaccharide synthesis, and the isolated beta-mannosylphosphoryldecaprenol was shown to function as a direct mannosyl donor on incubation with mannose, methyl alpha-D-mannoside, or alpha 1----6-linked mannooligosaccharides as acceptors. The Km values for mannose, methylmannoside, and alpha 1----6-linked mannobiose were 30-90 mM, whereas for alpha 1----6-linked mannotriose, mannotetraose, and mannopentaose the Km dropped to 2 mM. A weak enzymic activity was detected at pH 6 in the presence of both Mg2+ and Mn2+ ions that catalyzed addition of mannose in alpha 1----2 linkage to the longer alpha 1----6-mannooligosaccharides in a reaction that was specific for GDP-mannose as the donor. The membrane preparation also contained an endo-alpha 1----6-mannanase activity that degraded products longer than mannotriose by cleavage of trisaccharide units from the nonreducing end of the alpha 1----6-mannooligosaccharides.  相似文献   

6.
We investigated whether the polyenic and allylic phosphate systems of retinyl phosphate are essential for its mannosyl acceptor and donor activities in rat liver postnuclear membranes. Perhydromonoeneretinyl phosphate, a compound without growth-promoting activity in vitamin A-deficient animals, was prepared by catalytic hydrogenation of retinol and phosphorylation. Perhydromonoeneretinyl phosphate mannose synthesis from GDP-mannose showed continued accumulation for at least 60 min, while retinyl phosphate mannose synthesis showed a maximum at 20-30 min and then declined. Moreover, only retinyl phosphate stimulated transfer of mannose from GDP-mannose to endogenous proteins, which were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Thus, hydrogenation of side-chain double bonds in retinyl phosphate impaired only slightly its mannosyl acceptor activity, but caused loss of mannosyl donor activity.  相似文献   

7.
1. The transfer of mannose from GDP-(U-14-C)mannose into endogenous acceptors of bovine adrenal medullla and rat parotid was studied. The rapidly labelled product, a glycolipid, was partially purified and characterized. 2. It was stable to mild alkaline hydrolysis but yielded (14-C)mannose on mild acid hydrolysis. It co-chromatographed with mannosyl phosphoryl dolichol in four t.l.c. systems and on DEAE-cellulose acetate. Addition of dolichol phosphate or a dolichol phosphate-enriched fraction prepared from pig liver stimulated mannolipid synthesis. 3. The formation of mammolipid appeared reversible, since addition of GDP to a system synthesizing the mannolipid caused a rapid loss of label from the mannolipid. UDP-N-acetylglucosamine did not inhibit mannolipid synthesis except at high concentrations (2 mM), even though in the absence of GDP-mannose, N-acetylglucosamine was incorporated into a lipid having the properties of a glycosylated polyprenyl phosphate. 4. Mannose from GDP-mannose was also incorporated into two other acceptors, (2y being insoluble in chloroform-methanol (2:1, v/v) but soluble in choloroform-methanol-water (10:10:3, by vol.) and (ii) protein. These are formed much more slowly than the mannolipid. 5. Exogenous mannolipid served as a mannose donor for acceptors (i) and (ii), and it is suggested that transfer of mannose from GDP-mannose to mannosylated protein occurs via two intermediates, the mannolipid and acceptor (i).  相似文献   

8.
Diumycin, a phosphoglycolipid antibiotic, inhibits different mannosyl transfer reactions in yeast. Using membrane preparations, the drug effectively inhibited the formation of dolichyl phosphate mannose (DolP-Man); 50% inhibition was observed at approximately 10 microgram/ml. To a lesser extent also mannosyl transfer from DolP-Man to protein decreased in presence of diumycin. Both mannosyl transfer to protein-serine/threonine acceptor sites as well as into positions within the asparagine-linked polymannose part of the yeast mannoprotein are inhibited to about 60% under conditions where DolP-Man formation is blocked. DolP-Man synthesis as well as mannosyl transfer from DolP-Man to protein are also inhibited by diumycin using solubilized enzymes and exogenous acceptor substrates. Glycosyltransfer reactions from GDP-mannose either to protein-serine/threonine-linked mannose (formation of short manno-oligosaccharides) or to dolichyl-diphosphate-linked chitobiose (formation of lipid-linked trisaccharide) are not inhibited by diumycin under conditions where DolP-Man synthesis is blocked by the antibiotic. The inhibitory action of diumycin on DolP-Man formation does not seem to be competitive with respect to dolichyl phosphate, since it cannot be overcome by higher concentrations of dolichyl phosphate.  相似文献   

9.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

10.
In the absence of detergent, the transfer of mannose from GDP-mannose to rat liver microsomal vesicles was highly stimulated by exogenous retinyl phosphate in incubations containing bovine serum albumin, as measured in a filter binding assay. Under these conditions 65% of mannose 6-phosphatase activity was latent. The transfer process was linear with time up to 5min and with protein concentration up to 1.5mg/0.2ml. It was also temperature-dependent. The microsomal uptake of mannose was highly dependent on retinyl phosphate and was saturable against increasing amounts of retinyl phosphate, a concentration of 15mum giving half-maximal transfer. The uptake system was also saturated by increasing concentrations of GDP-mannose, with an apparent K(m) of 18mum. Neither exogenous dolichyl phosphate nor non-phosphorylated retinoids were active in this process in the absence of detergent. Phosphatidylethanolamine and synthetic dipalmitoylglycerophosphocholine were also without activity. Several water-soluble organic phosphates (1.5mm), such as phenyl phosphate, 4-nitrophenyl phosphate, phosphoserine and phosphocholine, did not inhibit the retinyl phosphate-stimulated mannosyl transfer to microsomes. This mannosyl-transfer activity was highest in microsomes and marginal in mitochondria, plasma and nuclear membranes. It was specific for mannose residues from GDP-mannose and did not occur with UDP-[(3)H]galactose, UDP- or GDP-[(14)C]glucose, UDP-N-acetyl[(14)C]-glucosamine and UDP-N-acetyl[(14)C]galactosamine, all at 24mum. The mannosyl transfer was inhibited 85% by 3mm-EDTA and 93% by 0.8mm-amphomycin. At 2min, 90% of the radioactivity retained on the filter could be extracted with chloroform/methanol (2:1, v/v) and mainly co-migrated with retinyl phosphate mannose by t.l.c. This mannolipid was shown to bind to immunoglobulin G fraction of anti-(vitamin A) serum and was displaced by a large excess of retinoic acid, thus confirming the presence of the beta-ionone ring in the mannolipid. The amount of retinyl phosphate mannose formed in the bovine serum albumin/retinyl phosphate incubation is about 100-fold greater than in incubations containing 0.5% Triton X-100. In contrast with the lack of activity as a mannosyl acceptor for exogenous dolichyl phosphate in the present assay system, endogenous dolichyl phosphate clearly functions as an acceptor. Moreover in the same incubations a mannolipid with chromatographic properties of retinyl phosphate mannose was also synthesized from endogenous lipid acceptor. The biosynthesis of this mannolipid (retinyl phosphate mannose) was optimal at MnCl(2) concentrations between 5 and 10mm and could not be detected below 0.6mm-MnCl(2), when synthesis of dolichyl phosphate mannose from endogenous dolichyl phosphate was about 80% of optimal synthesis. Under optimal conditions (5mm-MnCl(2)) endogenous retinyl phosphate mannose represented about 20% of dolichyl phosphate mannose at 15min of incubation at 37 degrees C.  相似文献   

11.
The native proteoheteroglycan (PHG) from mycelia of Neurospora crassa contain two kinds of carbohydrate chains differing structure. The oligosaccharides containing mannose and galactofuranose are attached by O-glycosidic linkages to serine or threonine residues in the protein (J. Biochem. 96, 1005-1011, 1984). The second kind of carbohydrate chain is a polysaccharide containing mannose and galactofuranose as the main sugar components. The results of structural studies with methylation and NMR analyses on the native PHG and some of its specifically degraded products obtained on partial acid hydrolysis and acetolysis indicate that the polysaccharide moiety of the PHG has an (alpha 1-6) linked mannan backbone with mainly (alpha 1-2) linked side chains, each of which consists of 2 to 5 mannose units, and most of the mannosyl side chains bear beta-galactofuranosyl residues linked to the 2 positions of the mannosyl nonreducing terminals. The galactofuranose residues are linked with each other by (beta 1-5) bonds.  相似文献   

12.
The mannans of Saccharomyces chevalieri, S. italicus, S. diastaticus, and S. carlsbergensis, were acetolyzed, and the fragments were separated by gel filtration. All gave similar acetolysis fingerprints, which were distinguished from S. cerevisiae by the presence of a pentasaccharide component in addition to the mono-, di-, tri-, and tetrasaccharides. All oligosaccharide fragments were composed of mannose in alpha-linkage. From methylation analysis and other structural studies, the disaccharide was shown to be alphaMan(1 --> 2)Man; the trisaccharide was shown to be a mixture of alphaMan(1 --> 2)alphaMan (1 --> 2)Man and alphaMan(1 --> 3)alphaMan(1 --> 2)Man; the tetrasaccharide was alphaMan(1 --> 3)alphaMan(1 --> 2)alphaMan(1 --> 2)Man; and the pentasaccharide was alphaMan(1 --> 3)alphaMan(1 --> 3)alphaMan(1 --> 2)alphaMan(1 --> 2)Man. The ratios of the different fragments varied slightly from strain to strain. Mannanase digestion of two of the mannans yielded polysaccharide residues that were unbranched (1 --> 6)-linked polymers, thus establishing the structural relationship between these mannans and that from S. cerevisiae. Antisera raised against the various yeasts cross-reacted with the mannans from each, and also with S. cerevisae mannan. The mannotetraose and mannopentaose acetolysis fragments gave complete inhibition of the precipitin reactions, which indicated that, in these systems as in the S. cerevisiae system, the terminal alpha(1 --> 3)-linked mannose unit was the principal immunochemical determinant on the cell surface.  相似文献   

13.
Sasaki A  Ishimizu T  Geyer R  Hase S 《The FEBS journal》2005,272(7):1660-1668
Endo-beta-mannosidase is an endoglycosidase that hydrolyzes only the Man beta 1-4GlcNAc linkage of the core region of N-linked sugar chains. Recently, endo-beta-mannosidase was purified to homogeneity from Lilium longiflorum (Lily) flowers, its corresponding gene was cloned and important catalytic amino acid residues were identified [Ishimizu T., Sasaki A., Okutani S., Maeda M., Yamagishi M. & Hase S. (2004) J. Biol. Chem.279, 38555-38562]. In the presence of Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides as a donor substrate and p-nitrophenyl beta-N-acetylglucosaminide as an acceptor substrate, the enzyme transferred mannose to the acceptor substrate by a beta1-4-linkage regio-specifically and stereo-specifically to give Man beta 1-4GlcNAc beta 1-pNP as a transfer product. Further studies indicated that not only p-nitrophenyl beta-N-acetylglucosaminide but also p-nitrophenyl beta-glucoside and p-nitrophenyl beta-mannoside worked as acceptor substrates, however, p-nitrophenyl beta-N-acetylgalactosaminide did not work, indicating that the configuration of the hydroxyl group at the C4 position of an acceptor is important. Besides mannose, oligomannoses were also transferred. In the presence of (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc-peptides (n = 0-2) and pyridylamino GlcNAc beta 1-4GlcNAc, the enzyme transferred (Man)(n)Man alpha 1-6Man en bloc to the acceptor substrate to produce pyridylamino (Man)(n)Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc (n =0-2). Thus, the lily endo-beta-mannosidase is useful for the enzymatic preparation of oligosaccharides containing the mannosyl beta 1,4-structure, chemical preparations of which have been frequently reported to be difficult.  相似文献   

14.
One side chain in the cell wall mannan of the yeast Kluyveromyces lactis has the structure (see article). (Raschke, W. C., and Ballou, C. E. (1972) Biochemistry 11, 3807). This (Man)4GNAc unit (the N-acetyl-D-glucosamine derivative of mannotetroase) and the (Man)4 side chain, aMan(1 yields 3)aMan(1 yields 2)aMan(1 yields 2)Man, are the principle immunochemical determinants on the cell surface. Two classes of mutants were obtained which lack the N-acetyl-D-glucosamine-containing determinant. The mannan of one class, designated mmnl, lacks both the (Man)4GNAc and (Man)4 side chains. Apparently, it has a defective alpha-1 yields 3-mannosyltransferase and the (Man)4 unit must be formed to serve as the acceptor before the alpha-1 yields 2-N-acetyl-glucosamine transferase can act. The other mutant class, mnn2, lacks only the (Man)4GNAc determinant and must be defective in adding N-acetylglucosamine to the mannotetrasose side chains. Two members of this class were obtained, one which still showed a wild type N-acetylglucosamine transferase activity in cell-free extracts and the other lacking it. They are allelic or tightly linked, and were designated mnn2-1 mnn2-2. Protoplast particles from the wild type cells catalyzed a Mn2+-dependent transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the mannotetraose side chain of endogenous acceptors. Exogenous mannotetraose also served as an acceptor in a Mn2+-dependent reaction and yielded (Man)4GNAc. Related oligosaccharides with terminal alpha (1 yields 3)mannosyl units were also good acceptors. The product from the reaction with alphaMan(1 yields 3)Man had the N-acetylglucosamine attached to the mannose unit at the reducing end, which supports the conclusion that the cell-free glycosyltransferase activity is identical with that involved in mannan synthesis. The reaction was inhibited by uridine diphosphate. Protoplast particles from the mmnl mutants showed wild type N-acetylglucosamine transferase activity with exogenous acceptor, but they had no endogenous activity because the endogenous mannan lacked acceptor side chains. Particles from the mnn2-1 mutant failed to catalyze N-acetylglucosamine transfer. In contrast, particles from the mnn2-2 mutant were indistinguishable from wild type cells in their transferase activity. Some event accompanying cell breakage and assay of the mnn2-2 mutant allowed expression of a latent alpha-1 yields 2-N-acetylglucosamine transferase with kinetic properties similar to those of the wild type enzyme.  相似文献   

15.
The polysaccharides from the envelopes of heterocysts and spores of Anabaena cylindrica consist of repeating units containing 1 mannosyl and 3 glucosyl residues, all linked by beta(1 yields 3) glycosidic bonds, with glycosidic bonds, with glucose, xylose, galactose, and mannose present in side branches. Degradation of the polysaccharides with specific glycosidases has permitted identification of the linkages to almost all of the branches. When the polysaccharides, from which all but two types of side branches had been cleaved, were digested with a beta(1 yields 3) endoglucanase, glucose, a tri-, and a pentasaccharide were produced. The oligosaccharide products were identified as (see article of journal). The backbones of the polysaccharides were sequenced from the reducing terminus by a modified Smith degradation. Analysis with NaB3H4 at each stage of the degradation showed that the backbones terminate in the sequence Man-Glc-Glc-Glc and are therefore presumed to have the structure (Man-Glc-Glc-Glc)n, and that they contain an average of from 128 to 150 sugar residues. From the information obtained, the repeating sequences of the original polysaccharides from the two types of differentiated cells of A. cylindrica could be largely deduced and appeared to be identical.  相似文献   

16.
Dolichyl mannosyl phosphate and GDPmannose were active substrates for the transfer of mannose to methyl-alpha-D-mannose, p-nitrophenyl-alpha-D-mannose, and free mannose with rat liver microsomal membranes. The products formed during dolichyl mannosyl phosphate incubation with methyl-alpha-D-mannose or with mannose were alpha-linked. The disaccharides formed by incubation of dolichyl mannosyl phosphate or GDPmannose with mannose were identified by paper chromatography and electrophoresis as mannose-alpha-1,2-mannose and mannose-alpha-1,3-mannose. synthesis of each product was dependent on the assay conditions used and was most markedly affected by the presence of detergent. Transfer of mannose from either substrate to form mannose-alpha-1,3-mannose was severely inhibited by Triton X-100.  相似文献   

17.
Zeng Y  Zhang J  Kong F 《Carbohydrate research》2002,337(15):1367-1371
An effective synthesis of the mannose heptasaccharide existing in the pathogenic yeast, Candida glabrata IFO 0622 strain was achieved via TMSOTf-promoted condensation of a tetrasaccharide donor 13 with a trisaccharide acceptor 16, followed by deprotection. The tetrasaccharide 13 was constructed by coupling of 2,3,4,6-tetra-O-benzoyl-alpha-D-mannopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-mannopyranosyl trichloroacetimidate (7) with allyl 3,4,6-tri-O-benzoyl-alpha-D-mannopyranosyl-(1-->2)-3,4,6-tri-O-benzoyl-alpha-D-mannopyranoside (10), followed by deallylation and trichloroacetimadation. The trisaccharide 16 was obtained by coupling of 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-mannopyranosyl trichloroacetimidate with 10, and subsequent 6-O-deacetylation. The disaccharide 7 was prepared through coupling of perbenzoylated mannosyl trichloroacetimidate with 4,6-O-benzylidene-1,2-O-ethylidene-beta-D-mannopyranose, then simultaneous debenzylidenation and deethylidenation, and subsequent acetylation, selective 1-O-deacetylation, and trichloroacetimidation. The disaccharide 10 was obtained by self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-beta-D-mannopyranose, followed by selective 2-O-deacetylation.  相似文献   

18.
Carboxypeptidase Y, localized in the lysosome-like yeast vacuole, has been metabolically labeled with [2-3H]mannose. After immunoprecipitation the carbohydrate moieties were released by treatment with endo-β-N-acetyl-glucosaminidase H and separated by paper electrophoresis. Evidence for the presence of phospho-monoester and -diester groups in the molecule has been obtained. In the latter phosphate links C-1 of mannose or of mannosyl 1,3-mannose to C-6 of a mannose residue within a larger oligomannose moiety. In the presence of tunicamycin yeast cells synthesize a carbohydrate-free carboxypeptidase Y, which could be traced after metabolic labeling with [14C]-phenylalanine. The carbohydrate-free enzyme was segregated into the vacuoles to the same extent as the intact glycoprotein.  相似文献   

19.
Isolated Golgi apparatus membranes from the germinal elements (spermatocytes and early spermatids) of rat testis were examined for their ability to incorporate [14C]mannose and [14C]galactose into glycolipid and glycoprotein fractions. Transfer of mannose from GDP-[14C]mannose into a Lipid I fractions (GPD:MPP mannosyl transferase activity), identified as mannosyl phosphoryl dolichol, showed optimal activity at 1.5 mM manganese and at pH 7.5. Low concentrations of Triton X-100 (0.1%) stimulated transferase activity in the presence of exogenous dolichol phosphate (Dol-P); however, inhibition occurred at Triton X-100 concentrations greater than 0.1%. Maximal activity of this GDP:MPP mannosyl transferase occurred at 25 microM Dol-P. Activity using endogenous acceptor was 2.34 pmole/min/mg, whereas in the presence of 25 microM Dol-P the specific activity was 284 pmole/min/mg, a stimulation of 125-fold. Incorporation of mannose into a Lipid II (oligosaccharide pyrophosphoryl dolichol) and a glycoprotein fraction was also examined. In the absence of exogenous Dol-P, rapid incorporation into Lipid I occurred with a subsequent rise in Lipid II and glycoprotein fractions suggesting precursor-product relationships. Addition of exogenous Dol-P to galactosyl transferase assays showed only a minor stimulation, less than twofold, in all fractions. Over the concentration range of 9.4 to 62.5 micrograms/ml Dol-P, only 1% of radioactive product accumulated in the combined lipid fractions. These observations suggest that the mannose transfer involves Dol-P intermediates and also that spermatocyte Golgi membranes may be involved in formation of the oligosaccharide core as well as in terminal glycosylations.  相似文献   

20.
A crude membrane preparation of the unicellular green alga Chlamydomonas reinhardii was found to catalyse the incorporation of D-[14C]mannose from GDP-D-[14C]-mannose into a chloroform/methanol-soluble compound and into a trichloroacetic acid-insoluble polymer fraction. The labelled lipid revealed the chemical and chromatographic properties of a short-chain (about C55-C65) alpha-saturated polyprenyl mannosyl monophosphate. In the presence of detergent both long-chain (C85-C105) dolichol phosphate and alpha-unsaturated undecaprenyl phosphate (C55) were found to be effective as exogenous acceptors of D-mannose from GDP-D-[14C]mannose to yield their corresponding labelled polyprenyl mannosyl phosphates. Exogenous dolichyl phosphate stimulated the incorporation of mannose from GDP-D-[14C]mannose into the polymer fraction 5-7-fold, whereas the mannose moiety from undecaprenyl mannosyl phosphate was not further transferred. Authentic dolichyl phosphate [3H]mannose and partially purified mannolipid formed from GDP-[14C]mannose and exogenous dolichyl phosphate were found to function as direct mannosyl donors for the synthesis of labelled mannoproteins. These results clearly indicate the existence of dolichol-type glycolipids and their role as intermediates in transglycosylation reactions of this algal system. Both the saturation of the alpha-isoprene unit and the length of the polyprenyl chain may be regarded as evolutionary markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号