首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Karyotypes and X chromosome inactivation were studied in embryos obtained from female mice carrying T(X;4)37H translocation on day 6 to 8 of gestation by a BrdU-acridine orange method. A total of 18 different karyotypes were found in 477 embryos examined: 90.0% embryos were products expected from 2:2 alternate or adjacent 1 disjunction. 3:1 and adjacent 2 disjunctions accounted for approximately 8.0% and 0.7% conceptuses, respectively. In the embryo proper of balanced T37H/ + conceptuses, inactivation was random with respect to the normal X and the larger translocation X (4x) chromosome. In all the cells with the 4x inactive, the late replication apparently did not spread to the attached autosomal portion, although black/brown coat variegation implies spreading of inactivation into the autosomal region. The X chromosome segment deprived of the inactivation center remained active in all the cells examined and it exerted deleterious effects on embryonic or fetal development. Observation in embryos having two maternally derived X chromosomes showed that they were indeed resistant to inactivation in early extraembryonic cell lineages, and two copies of active X chromosomes in the trophectoderm fatally affected embryonic development due to inability to form the extraembryonic ectoderm and ectoplacental cone from the polar trophectoderm. In unbalanced X aneuploids the X chromosomes with the deletion were preferentially inactivated due to strong selection against nullisomy X.  相似文献   

2.
Summary An X;9;22 translocation was detected in bone marrow cells of a female patient with blastic crisis of CML. A dynamic study following 5-BrdU treatment showed that the inactive late-replicating X chromosome was the normal one. This pattern of X-chromosome replication appears to be superimposable on the most usual model found in congenital X/autosome translocations.It is suggested that preferential autosome translocation onto the active X chromosome could be the general rule in acquired X/autosome translocations associated with long survival.  相似文献   

3.
Chromosomes were harvested from two fibroblast lines derived from a phenotypically normal cow and her albino daughter, both known to be heterozygous for an X/autosome translocation. QFH-banding after early BrdU incorporation identified the translocated autosomal material as chromosome 23 bands 13-25, and revealed that the centromeric portion of the translocated chromosome 23 had been retained. Fluorescent in situ hybridization of a BoLA Class I cDNA probe to the normal chromosome 23 and to the translocated autosomal material confirmed the identity of the translocation, and allowed a more precise sublocalization of the MHC in cattle than that previously reported.  相似文献   

4.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

5.
Summary Barr body staining procedures were applied directly to the chamber slide cultures of female amniotic cells, WI38 fibroblasts, normal female kidney cells, and a human breast carcinoma cell line, Elco. A high frequency of Barr bodies was found in all the normal female control cells; however, no Barr bodies were observed in the Elco cells. By trypsin G-banding analysis, two normal X chromosomes were identified in all Elco cells. The late DNA replication pattern of the cell line was then studied with the terminal BrdU pulse method. Both X chromosomes in the Elco cell line were found to be euchromatic with a characteristic R-banding pattern; no late-replicating X chromosome was observed. The absence of both a Barr body and a late-replicating heterocyclic X chromosome provides strong cytogenetic evidence that an inactivated X chromosome is absent in the human breast carcinoma cells bearing two X chromosomes.  相似文献   

6.
Only the morphologically normal X chromosome is inactivated in female mice heterozygous for Searle's X-autosome translocation, T(X;16)16H. Here we performed a visual study of the primary and secondary events that culminate in the completely nonrandom inactivation of the X in female embryos having this translocation. The data we have obtained so far indicate that the initial choice of the future inactive X chromosome is biased, with the degree of skewing somewhere between 70:30% and 90:10% in favor of the morphologically normal X chromosome. The majority of genetically unbalanced cells that inactivate a translocated X chromosome are quickly eliminated from the embryo proper by E8.5, although the survival of such cells is sporadically observed thereafter. The initial nonrandom choice demonstrated in this study supports the contention that the T(X;16)16H translocation disrupts one of the loci involved in the randomness of the choice of the future inactive X chromosome. Although the HMG-LACZ transgene in H253 stock mice is an excellent marker of X chromosome inactivation, the present study suggests that it is infrequently de-repressed on the inactive X chromosome.  相似文献   

7.
Summary In lymphocytes of a human female carrier of a balanced X;3 translocation, 46,X,t(X;3)(q28;q21), late replication of the structurally normal X chromosome only was previously described (de la Chapelle and Schröder 1973). We have now confirmed this finding using a fresh blood sample. Examining the chromosomes of this individual in fibroblasts we observed that either the normal X or the Xq+ chromosome could replicate late and show inactivity after fusion with heteroploid mouse cells. The replication patterns of chromosomes in human X;autosome translocations have so far almost exclusively been analyzed in lymphocytes. Our findings stress that results based on these cells are not representative for all cell types.  相似文献   

8.
A kindred with an X-autosome translocation and differential inactivation of the X chromosome is described. The phenotypically normal mother has a reciprocal translocation [46,X,rcp(X;9) (q11;q32)] while the daughter's karyotype is unbalanced [46,X,--X,+der(9),rcp(X;9) (q11;q32)mat], indicating adjacent-two type of segregation in the mother. In the mother's cells the normal X is late replicating, while in the daughter's cells almost the entire der(9) is late replicating, indicating the presence of autosomal inactivation. The daughter's abnormal phenotype can be explained by her sex chromosomal complement and the absence of effective trisomy 9. At this stage there is no simple explanation to account for all types of inactivation patterns encountered in the 14 balanced and 15 unbalanced cases of X-autosome translocations reported to date. Selection of X inactivation is not an inherent characteristic of the X chromosome per se, and it is not dependent on the direction of chromosomal exchange, as was suggested previously. Correlation of the phenotypic and cytogenetic features of these patients suggests a pattern of X and autosomal inactivation consistent with the least amount of genotypic and phenotypic imbalance in most cases. The data are most consistent with random X inactivation followed by selection of the most viable cell line.  相似文献   

9.
The frequency of X chromosome aneuploidy in human female peripheral blood lymphocytes has been reported by several investigators to be significantly higher than expected based upon chance alone. Studies in our laboratory showed that 72% of the micronuclei in the peripheral blood of human females contained the X chromosome. Such a high frequency of X chromosome loss suggests that some unique mechanism may be responsible for this phenomenon. The present study was carried out to test the hypothesis that the lost or micronucleated chromsome is the inactive and not the active X. Blood samples were obtained from two unrelated females, 36 and 33 years of age, each with a different X; 9 reciprocal translocation. In each, the normal X chromosome is inactive and the translocated X is active. Isolated lymphocytes were cultured according to standard techniques and blocked with cytochalasin B. Using a modified micronucleus assay, we scored 10,000 binucleated cells from the 36 year old, while 9,500 binucleated cells were scored from the 33 year old. The slides were first labeled and the kinetochore status of each micronucleus was determined. This was followed by simultaneous hybridization with a 2.0 kilobase centromeric X chromosome-specific probe and a chromosome 9 specific whole chromosome painting probe. All micronucleated cells were relocated and scored for their probe status. A total of 217 micronuclei were scored from the two subjects, of which 96 (44.2%) contained the X chromosome. Of these 96 micronuclei, 80 (83.3%) contained the inactive X, based on the absence of chromosome 9 material in the micronucleus. These results support our hypothesis that the inactive X chromosome is preferentially included in the micronuclei, and suggest that the X chromosome hypoploidy observed at metaphase in aging women is a related phenomenon. Received: 5 May 1995 / Revised: 15 July 1995  相似文献   

10.
Summary The present report summarizes molecular studies of parental origin and sex chromosome mosaicism in forty-one 45,X conceptuses, consisting of 29 spontaneous abortions and 12 liveborn individuals with Turner syndrome. Our studies indicate that most 45,X conceptuses have a single, maternally derived X chromosome, regardless of whether the conceptus is liveborn or spontaneously aborted. In studies of mosaicism, our identification of X- and Y-chromosome mosaics among 45,X spontaneous abortions indicates that mosaicism does not ensure survival to term of 45,X fetuses. However, the incidence of sex chromosmome mosaicism is substantially higher in liveborn than in aborted 45,X conceptuses, indicating that the presence of a second cell line increases the likelihood of survival to term.  相似文献   

11.
A Robertsonian translocation in the mouse between the X chromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of the X-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meiosis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10.8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3.9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad and Y were studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3.2% of the cells analysed in the electron microscope. The pairing between the X and Y chromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
R Frankham 《Génome》1990,33(3):340-347
For X-Y exchange to be of importance in the coevolution of X and Y rDNA, there must be a mechanism to maintain cytologically normal X chromosomes in the face of continual infusions of X.YL chromosomes produced by X-Y exchanges. Replicated populations were founded with different frequencies of isogenic X and X.YL chromosomes. The X.YL chromosome declined in frequency over time in all lines. Relative fitnesses, estimated from chromosome frequency trajectories, were 0.40, 1.01, and 1.0 for X.YL/X.YL, X.YL/X, and X/X females and 0.75 and 1.0 for X.YL/Y and X/Y males, respectively. The equilibrium frequency for the X.YL chromosome due to the balance between X-Y exchange and selection was predicted to be 4-16 x 10(-4). The results strengthen the evidence for the involvement of X-Y exchange in the coevolution of X and Y rDNA arrays. Conditions for the evolution of reproductive isolation by sex-chromosome translocation are much less probable than previously supposed since the X.YL translocation chromosome is at a selective disadvantage to cytologically normal X chromosomes. Additional heterochromatin was not neutral but was only deleterious beyond a threshold, as one dose of the heterochromatic XL arm did not reduce female reproductive fitness, but two doses did.  相似文献   

13.
Mice heterozygous for the T(X;16)16H translocation and carrying Sxr on their normal (inactive) X chromosome (ie, T16H/X Sxr individuals) may develop as males, females, or hermaphrodites. The proportion of males varied from 22% to 65% depending on the source of the normal X chromosome. A model is proposed, according to which relatively small variations in the spreading of inactivation from the X chromosome into the attached Sxr fragment produce large changes in the proportion of males. Testis weight in T16H/X Sxr males was found to be significantly smaller than in X/X Sxr males, irrespective of the source of the normal X chromosome.  相似文献   

14.
Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome. Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher than the frequency of visible reciprocal translocations.  相似文献   

15.
Equine half sibs with an unbalanced X;15 translocation or trisomy 28   总被引:1,自引:0,他引:1  
Two unrelated chromosome abnormalities were found in equine half sibs. The proposita, Case 1, which was short in stature and infertile, had a de novo unbalanced X;15 translocation involving loss of Xp. Replication studies indicated that the translocated X was preferentially late replicating and that this late replication spread variably into the autosomal segment. Case 2, a half brother of the proposita, was short in stature, had cryptorchidism, and was trisomic for chromosome 28. Cytogenetic analysis of the dam, the sire of Case 1, and two other phenotypically normal half sibs revealed normal chromosome complements. Five further normal pregnancies were reported. The finding of two unrelated chromosome abnormalities is therefore probably fortuitous in this family. This is the first case of an unbalanced X-autosome translocation and the first case of an autosome trisomy to be reported in the horse.  相似文献   

16.
Several patients with X chromosome structural abnormalities have been more severely affected clinically than expected. Since bends at Xq13-21 have been associated with inactivation, the authors scored bends retrospectively in 62 patients with X chromosome aneuploidy and 21 cases with structural abnormalities of the X chromosome. They found that patients with 2 X inactivation sites where one X was structurally abnormal had significantly fewer cells with X bends than normal 46,XX. In addition, these patients also showed X bends on the normal X more often than would be expected if non-random X inactivation of the abnormal X chromosome was occurring. Five of the 6 patients with a short or long arm deletion or paracentric inversion of Xq were mentally retarded or had other congenital anomalies not usually associated with Turner syndrome. This suggests to them that these clinical findings may be related to interference with X inactivation patterns in cells with a structurally abnormal X chromosome.  相似文献   

17.
In mammals, X-chromosome inactivation occurs in all female cells, leaving only a single active X chromosome. This serves to equalise the dosage of X-linked genes in male and female cells. In the mouse, the paternally derived X chromosome (X(P)) is imprinted and preferentially inactivated in the extraembryonic tissues whereas in the embryonic tissues inactivation is random. To investigate how X(P) is chosen as an inactivated X chromosome in the extraembryonic cells, we have produced experimental embryos by serial nuclear transplantation from non-growing (ng) oocytes and fully grown (fg) oocytes, in which the X chromosomes are marked with (1) an X-linked lacZ reporter gene to assay X-chromosome activity, or (2) the Rb(X.9)6H translocation as a cytogenetic marker for studying replication timing. In the extraembryonic tissues of these ng/fg embryos, the maternal X chromosome (X(M)) derived from the ng oocyte was preferentially inactivated whereas that from the fg oocyte remained active. However, in the embryonic tissues, X inactivation was random. This suggests that (1) a maternal imprint is set on the X(M) during oocyte growth, (2) the maternal imprint serves to render the X(M) resistant to inactivation in the extraembryonic tissues and (3) the X(M) derived from an ng oocyte resembles a normal X(P).  相似文献   

18.
The mouse embryonal carcinoma cell line MC12 carries two X chromosomes, one of which replicates late in S phase and shares properties with the normal inactive X chromosome and, therefore, is considered to be inactivated. Since the hypoxanthine phosphoribosyl transferase (HPRT) gene on the active X chromosome is mutated (HPRT(NDASH;)), MC12 cells lack HPRT activity. After subjecting MC12 cells to selection in HAT medium, however, a number of HAT-resistant clones (HAT(R)) appeared. The high frequency of HAT resistance (3.18 x 10(-4)) suggested reactivation of HPRT(PLUS;) on the inactive X chromosome rather than reversion of HPRT(NDASH;). Consistent with this view, cytological analyses showed that the reactivation occurred over the length of the inactive X chromosome in 11 of 20 HAT(R) clones isolated. The remaining nine clones retained a normal heterochromatic inactive X chromosome. The spontaneous reactivation rate of the HPRT(PLUS;) on the inactive X chromosome was relatively high (1.34 x 10(-6)) and comparable to that observed for XIST-deleted somatic cells (Csankovszki et al., 2001), suggesting that the inactivated state is poorly maintained in MC12 cells.  相似文献   

19.
Cytogenetic analyses of bone marrow and gonadal cells in a male mouse, which appeared to be normal, revealed mosaicism in both tissues. Three chromosome complements, 39,X, 40,XY, and 41,XYY, were found in both bone marrow and spermatogonia, while only the last two complements were found in spermatocytes. In this mouse, unlike in the human, the XYY cells showed a proliferative advantage over the XY cells. In XYY cells at diakinesis/metaphase I the gonosomes showed all possible types of association, and a pairing advantage of the X chromosome was clearly demonstrated. The fertility of the mouse was not determined. However, since the epididymal sperm count was reduced by only 55% and the incidence of sperm head abnormality was near normal, it is not evident that the mouse was sterile.  相似文献   

20.
A t(X:15)(q23;q25) was detected during cytogenetic investigation of a lymphoblastoid cell line established from a female patient with Fanconi anemia. The translocation was apparently balanced at passage 300 and unbalanced at passage 13. A chromatid exchange between both the normal and the der(15), between the centromere and band 15q25, may explain these results. Replication studies, following BrdU incorporation, indicate that the segment Xq23----qter from the der(15) is early replicating whereas segment Xpter----q23 from the der(X) is late replicating. Since the normal X was early replicating, it is concluded that the segment of the long arm of chromosome X, separated from its inactivation center by the translocation, was reactivated. This interpretation is confirmed by the methylation patterns of the hypoxanthine phosphoribosyltransferase gene (HPRT), mapped on Xq26, which corresponds to that of an active gene, whereas that of phosphoglycerate kinase (PGK1), which remained on the der(X), corresponds to that of an inactive gene. This is the first example of reactivation of a segment of the X chromosome following a structural rearrangement in somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号