首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diets rich in fat result in higher concentrations of secondary bile acids or their salts in the colon, which may adversely affect cells of the colonic epithelium. Because secondary bile acids are thought to be genotoxic, exposing colon epithelial cells to secondary bile acids may induce DNA damage that might lead to apoptosis. The requirement for the p53 tumor suppressor gene in such events is unknown. In particular, the effects of secondary bile acids on colon epithelial cells having different p53 tumor suppressor gene status have not been examined. Therefore, HCT-116 and HCT-15 human colon adenocarcinoma cells, which express the wild-type and mutant p53 genes, respectively, were exposed to physiological concentrations of deoxycholate. The cells were then analyzed for evidence of DNA damage and apoptosis. After 2 h of incubation with 300 microM deoxycholate, both cell lines had greater levels of single-strand breaks in DNA as assessed by the comet assay. After 6 h of exposure to deoxycholate, HCT-116 and HCT-15 cells showed morphological signs of apoptosis, i.e., membrane blebbing and the presence of apoptotic bodies. Chromatin condensation and fragmentation were also seen after staining DNA with 4',6-diamidino-2-phenylindole. Other apoptotic assays revealed greater binding of annexin V-fluorescein isothiocyanate, as well as greater post-enzymatic labeling with dUTP-fluorescein isothiocyanate, by both cell lines exposed to deoxycholate. These data suggest that deoxycholate caused DNA damage in colon epithelial cells that was sufficient to trigger apoptosis in a p53-independent manner.  相似文献   

2.
The p53 response to DNA damage   总被引:12,自引:0,他引:12  
Meek DW 《DNA Repair》2004,3(8-9):1049-1056
  相似文献   

3.
Cells which lack DNA-activated protein kinase (DNA-PK) are very susceptible to ionizing radiation and display an inability to repair double strand DNA breaks. DNA-PK is a member of a protein kinase family that includes ATR and ATM which have strong homology in their carboxy-terminal kinase domain with PL-3 kinase. ATM has been proposed to act upstream of p53 in cellular response to ionizing radiation. DNA-PK may similarly interact with p53 in cellular growth control and in mediation of the response to ionizing radiation.  相似文献   

4.
5.
6.
p53 is required for DNA damage‐induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53‐deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA‐dependent protein kinase (DNA‐PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation‐induced apoptosis, whereas apoptosis in DNA‐PKcs/p53, Ku80/p53 and Ku70/p53 double‐null mice was quantitatively equivalent to that seen in wild‐type mice. This p53‐independent apoptotic response was specific to the loss of DNA‐PK, as it was not seen in ligase IV (Lig4)/p53 or ataxia telangiectasia mutated (Atm)/p53 double‐null mice. Furthermore, it was associated with an increase in phospho‐checkpoint kinase 2 (CHK2), and cleaved caspases 3 and 9, the latter indicating engagement of the intrinsic apoptotic pathway. This shows that there are two separate, but equally effective, apoptotic responses to DNA damage: one is p53 dependent and the other, engaged in the absence of DNA‐PK, does not require p53.  相似文献   

7.
8.
Histone modifications in response to DNA damage   总被引:1,自引:0,他引:1  
  相似文献   

9.
Cadmium induces p53-dependent apoptosis in human prostate epithelial cells   总被引:1,自引:0,他引:1  
Cadmium, a widespread toxic pollutant of occupational and environmental concern, is a known human carcinogen. The prostate is a potential target for cadmium carcinogenesis, although the underlying mechanisms are still unclear. Furthermore, cadmium may induce cell death by apoptosis in various cell types, and it has been hypothesized that a key factor in cadmium-induced malignant transformation is acquisition of apoptotic resistance. We investigated the in vitro effects produced by cadmium exposure in normal or tumor cells derived from human prostate epithelium, including RWPE-1 and its cadmium-transformed derivative CTPE, the primary adenocarcinoma 22Rv1 and CWR-R1 cells and LNCaP, PC-3 and DU145 metastatic cancer cell lines. Cells were treated for 24 hours with different concentrations of CdCl(2) and apoptosis, cell cycle distribution and expression of tumor suppressor proteins were analyzed. Subsequently, cellular response to cadmium was evaluated after siRNA-mediated p53 silencing in wild type p53-expressing RWPE-1 and LNCaP cells, and after adenoviral p53 overexpression in p53-deficient DU145 and PC-3 cell lines. The cell lines exhibited different sensitivity to cadmium, and 24-hour exposure to different CdCl(2) concentrations induced dose- and cell type-dependent apoptotic response and inhibition of cell proliferation that correlated with accumulation of functional p53 and overexpression of p21 in wild type p53-expressing cell lines. On the other hand, p53 silencing was able to suppress cadmium-induced apoptosis. Our results demonstrate that cadmium can induce p53-dependent apoptosis in human prostate epithelial cells and suggest p53 mutation as a possible contributing factor for the acquisition of apoptotic resistance in cadmium prostatic carcinogenesis.  相似文献   

10.
The dynamics of the tumor suppressor protein p53 have been previously investigated in single cells using fluorescently tagged p53. Such approach reports on the total abundance of p53 but does not provide a measure for functional p53. We used fluorescent protein-fragment complementation assay (PCA) to quantify in single cells the dynamics of p53 tetramers, the functional units of p53. We found that while total p53 increases proportionally to the input strength, p53 tetramers are formed in cells at a constant rate. This breaks the linear input–output relation and dampens the p53 response. Disruption of the p53-binding protein ARC led to a dose-dependent rate of tetramers formation, resulting in enhanced tetramerization and induction of p53 target genes. Our work suggests that constraining the p53 response in face of variable inputs may protect cells from committing to terminal outcomes and highlights the importance of quantifying the active form of signaling molecules in single cells.Quantification of the dynamics of p53 tetramers in single cells using a fluorescent protein-fragment complementation assay reveals that, while total p53 increases proportionally to the DNA damage strength, p53 tetramers are formed at a constant rate.  相似文献   

11.
12.
13.
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.  相似文献   

14.
15.
Cadmium induces phosphorylation of p53 at serine 15 in MCF-7 cells   总被引:8,自引:0,他引:8  
When MCF-7 cells were incubated with 10 or 20 microM CdCl(2), p53 protein level increased after 18 h. Among serines in p53 protein immunoprecipitated from cells treated with CdCl(2), only Ser 15 was phosphorylated. No clear phosphorylation was found on Ser 6, 9, 20, 37, and 392. Accumulation of p53 protein phosphorylated at Ser 15 was also found after 18 h exposure. While phosphorylation of extracellular signal-regulated protein kinase, c-Jun NH2-terminal kinase and p38 was found in cells treated with CdCl(2), treatment with U0126, LL-Z1640-2, or SB203580 did not suppress Ser 15 phosphorylation. On the other hand, treatment with wortmannin or caffeine suppressed CdCl(2)-induced Ser 15 phosphorylation and accumulation of p53 protein. The present results showed that cadmium induces phosphorylation of p53 at Ser 15 in MCF-7 cells depending on phosphatidylinositol 3-kinase related kinases, but not on mitogen-activated protein kinases.  相似文献   

16.
Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between MDM2 and p53. To examine the requirement for this DNA damage-induced phosphorylation event in a more physiological setting, we introduced a missense mutation into the endogenous p53 gene of mouse embryonic stem (ES) cells that changes serine 23 (S23), the murine equivalent of human serine 20, to alanine (A). Murine embryonic fibroblasts harboring the p53(S23A) mutation accumulate p53 as well as p21 and Mdm2 proteins to normal levels after DNA damage. Furthermore, ES cells and thymocytes harboring the p53(S23A) mutation also accumulate p53 protein to wild-type levels and undergo p53-dependent apoptosis similarly to wild-type cells after DNA damage. Therefore, phosphorylation of murine p53 at Ser23 is not required for p53 responses to DNA damage induced by UV and ionizing radiation treatment.  相似文献   

17.
Wild-type p53 protein is abnormally sequestered in the cytoplasm of a subset of primary human tumors including neuroblastomas (NB) (U. M. Moll, M. LaQuaglia, J. Benard, and G. Riou, Proc. Natl. Acad. Sci. USA 92:4407-4411, 1995; U. M. Moll, G. Riou, and A. J. Levine, Proc. Natl. Acad. Sci.USA 89:7262-7266, 1992). This may represent a nonmutational mechanism for abrogating p53 tumor suppressor function. To test this hypothesis, we established the first available in vitro model that accurately reflects the wild-type p53 sequestration found in NB tumors. We characterized a series of human NB cell lines that overexpress wild-type p53 and show that p53 is preferentially localized to discrete cytoplasmic structures, with no detectable nuclear p53. These cell lines, when challenged with a variety of DNA strand-breaking agents, all exhibit impaired p53-mediated G1 arrest. Induction analysis of p53 and p53-responsive genes show that this impairment is due to suppression of nuclear p53 accumulation. Thus, this naturally occurring translocation defect compromises the suppressor function of p53 and likely plays a role in the tumorigenesis of these tumors previously thought to be unaffected by p53 alterations.  相似文献   

18.
19.
20.
Zhang XP  Liu F  Wang W 《Biophysical journal》2012,102(10):2251-2260
The selective expression of p53-targeted genes is central to the p53-mediated DNA damage response. It is affected by multiple factors including posttranslational modifications and cofactors of p53. Here, we proposed an integrated model of the p53 network to characterize how the cellular response is regulated by key cofactors of p53, Hzf and ASPP. We found that the sequential induction of Hzf and ASPP is crucial to a reliable cell-fate decision between survival and death. After DNA damage, activated p53 first induces Hzf, which promotes the expression of p21 to arrest the cell cycle and facilitate DNA repair. The cell recovers to normal proliferation after the damage is repaired. If the damage is beyond repair, Hzf is effectively degraded, and activated E2F1 induces ASPP, which promotes the expression of Bax to trigger apoptosis. Furthermore, interrupting the induction of Hzf or ASPP remarkably impairs the cellular function. We also proposed two schemes for the production of the unknown E3 ubiquitin ligase for Hzf degradation: it is induced by either E2F1 or p53. In both schemes, the sufficient degradation of Hzf is required for apoptosis induction. These results are in good agreement with experimental observations or are experimentally testable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号