首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diacetyl removal from beer was studied with whole cells and crude enzyme extracts of yeasts and bacteria. Cells of Streptococcus diacetilactis 18-16 destroyed diacetyl in solutions at a rate almost equal to that achieved by the addition of whole yeast cells. Yeast cells impregnated in a diatomaceous earth filter bed removed all diacetyl from solutions percolated through the bed. Undialyzed crude enzyme extracts from yeast cells removed diacetyl very slowly from beer at its normal pH (4.1); at a pH of 5.0 or higher, rapid diacetyl removal was achieved. Dialyzed crude enzyme extracts from yeast cells were found to destroy diacetyl in a manner quite similar to that of diacetyl reductase from Aerobacter aerogenes, and both the bacterial and the yeast extracts were stimulated significantly by the addition of reduced nicotinamide adenine dinucleotide (NADH). Diacetyl reductase activity of four strains of A. aerogenes was compared; three of the strains produced enzyme with approximately twice the specific activity of the other strain (8724). Gel electrophoresis results indicated that at least three different NADH-oxidizing enzymes were present in crude extracts of diacetyl reductase. Sephadex-gel chromotography separated NADH oxidase from diacetyl reductase. It was also noted that ethyl alcohol concentrations approximately equivalent to those found in beer were quite inhibitory to diacetyl reductase.  相似文献   

2.
啤酒中风味物质双乙酰含量的测定   总被引:5,自引:0,他引:5  
采用Turbotherm Vap40自动定氮仪进行啤酒的蒸馏操作以测定啤酒中双乙酰含量,测定结果与国标法进行了对照,结论是Turbotherm Vap40自动定氮仪可以替代国标法中的双乙酰蒸馏装置进行啤酒中双乙酰含量的测定。  相似文献   

3.
Diacetyl causes an unwanted buttery off-flavor in lager beer. It is spontaneously generated from α-acetolactate, an intermediate of yeast's valine biosynthesis released during the main beer fermentation. Green lager beer has to undergo a maturation process lasting two to three weeks in order to reduce the diacetyl level below its taste-threshold. Therefore, a reduction of yeast's α-acetolactate/diacetyl formation without negatively affecting other brewing relevant traits has been a long-term demand of brewing industry. Previous attempts to reduce diacetyl production by either traditional approaches or rational genetic engineering had different shortcomings. Here, three lager yeast strains with marked differences in diacetyl production were studied with regard to gene copy numbers as well as mRNA abundances under conditions relevant to industrial brewing. Evaluation of data for the genes directly involved in the valine biosynthetic pathway revealed a low expression level of Sc-ILV6 as a potential molecular determinant for low diacetyl formation. This hypothesis was verified by disrupting the two copies of Sc-ILV6 in a commercially used lager brewers' yeast strain, which resulted in 65% reduction of diacetyl concentration in green beer. The Sc-ILV6 deletions did not have any perceptible impact on beer taste. To our knowledge, this has been the first study exploiting natural diversity of lager brewers' yeast strains for strain optimization.  相似文献   

4.
A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced diacetyl (acetoin) reductase activity with NADH as coenzyme, but not with NADPH as coenzyme, suggesting the presence of another diacetyl (acetoin)-reducing activity in L. pseudomesenteroides. Plasmid-curing experiments demonstrated that the butA gene is carried on a 20-kb plasmid in L. pseudomesenteroides.  相似文献   

5.
Three strains of Streptococcus lactis subsp. diacetylactis, namely DRC-1, DRC-2 and DRC-3 which produced diacetyl up to 120 h of incubation were exposed to the ultraviolet irradiation as well as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) to isolate mutants lacking diacetyl reductase activity. UV irradiation did not produce any isolate completely devoid of diacetyl reductase activity, though, 99.5% loss in activity could be achieved. NTG treatment proved to be more effective and seven survivors exhibiting complete loss of diacetyl reductase activity were recovered. These altered characteristics were retained on repeated subculturing.  相似文献   

6.
Using rapid amplification of cDNA ends PCR, a cDNA species for diacetyl reductase (EC 1.1.1.5) was isolated from hamster liver. The encoded protein consisted of 244 amino acids, and showed high sequence identity to mouse lung carbonyl reductase and hamster sperm P26h protein, which belong to the short-chain dehydrogenase/reductase family. The enzyme efficiently reduced L-xylulose as well as diacetyl, and slowly oxidized xylitol. The K(m) values for L-xylulose and xylitol were similar to those reported for L-xylulose reductase (EC 1.1.1.10) of guinea pig liver. The identity of diacetyl reductase with L-xylulose reductase was demonstrated by co-purification of the two enzyme activities from hamster liver and their proportional distribution in other tissues.  相似文献   

7.
Using rapid amplification of cDNA ends PCR, a cDNA species for diacetyl reductase (EC 1.1.1.5) was isolated from hamster liver. The encoded protein consisted of 244 amino acids, and showed high sequence identity to mouse lung carbonyl reductase and hamster sperm P26h protein, which belong to the short-chain dehydrogenase/reductase family. The enzyme efficiently reduced l-xylulose as well as diacetyl, and slowly oxidized xylitol. The Km values for l-xylulose and xylitol were similar to those reported for l-xylulose reductase (EC 1.1.1.10) of guinea pig liver. The identity of diacetyl reductase with l-xylulose reductase was demonstrated by co-purification of the two enzyme activities from hamster liver and their proportional distribution in other tissues.  相似文献   

8.
The NADPH-linked diacetyl reductase system from the cytosolic fraction of Saccharomyces cerevisiae has been resolved into two oxidoreductases catalyzing irreversibly the enantioselective reduction of diacetyl (2,3-butanedione) to (S)- and (R)-acetoin (3-hydroxy-2-butanone) [so-called (S)- and (R)-diacetyl reductases] (EC 1.1.1.5) which have been isolated to apparent electrophoretical purity. The clean-up procedures comprising streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B column chromatography, affinity chromatography on Matrex Gel Red A and Superose 6 prep grade filtration led to 120-fold and 368-fold purifications, respectively. The relative molecular mass of the (R)-diacetyl reductase, estimated by means of HPLC filtration on Zorbax GF 250 and sodium dodecyl sulfate/polyacrylamide gel electrophoresis, was 36,000. The (R)-enzyme was most active at pH 6.4 and accepted in addition to diacetyl C5-, C6-2,3-diketones, 1,2-cyclohexanedione, 2-oxo aldehydes and short-chain 2- and 3-oxo esters as substrates. The enzyme was characterized by high enantioselectivity and regiospecificity. The Km values for diacetyl and 2,3-pentanedione were determined as 2.0 mM. The Mr of the (S)-diacetyl reductase was determined as 75,000 by means of HPLC filtration of Zorbax GF 250. The enzyme decomposed into subunits of Mr 48,000 and 24,000 on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The optimum pH was 6.9. The purified (S)-enzyme reduced stereospecifically a broad spectrum of substrates, comprising 2,3-, 2,4- and 2,5-diketones, 2-oxo aldehydes, 1,2-cyclohexanedione and methyl ketones as well as 3-, 4- and 5-oxo esters. The 2,3- and 2,4-diketones are transformed to the corresponding (S)-2-hydroxy ketones; 2,5-hexanedione, however, was reduced to (S,S)-2,5-hexanediol. The Km values for diacetyl and 2,3-pentanedione were estimated as 2.3 and 1.5 mM, respectively. Further characterization of the (S)-diacetyl reductase revealed that it is identical with the so-called '(S)-enzyme', involved in the enantioselective reduction of 3-, 4- and 5-oxo esters in baker's yeast.  相似文献   

9.
Diacetyl (2,3-butanedione) imparts an unpleasant "butterscotch-like" flavor to alcoholic beverages such as beer, and therefore its concentration needs to be reduced below the sensory threshold before packaging. We examined the mechanisms that lead to highly elevated diacetyl formation in petite mutants of Saccharomyces cerevisiae during beer fermentations. We present evidence that elevated diacetyl formation is tightly connected to the mitochondrial import of acetohydroxyacid synthase (Ilv2), the key enzyme in the production of diacetyl. Our data suggest that accumulation of the matrix-targeted Ilv2 preprotein in the cytosol is responsible for the observed high diacetyl levels. We could show that the Ilv2 preprotein accumulates in the cytosol of petite yeasts. Furthermore, expression of an Ilv2 variant that lacks the N-terminal mitochondrial targeting sequence and thus cannot be imported into mitochondria led to highly elevated diacetyl levels comparable to a petite strain. We further show that expression of a mutant allele of the γ-subunit of the F(1)-ATPase (ATP3-5) could be an attractive way to reduce diacetyl formation by petite strains.  相似文献   

10.
J González  I Vidal  A Bernardo  R Martin 《Biochimie》1988,70(12):1791-1797
The kinetic mechanism of diacetyl and 2,3-pentanedione reduction by diacetyl reductase from Staphylococcus aureus was investigated. The shape of the primary double reciprocal plots, the product inhibition pattern, and the features of the inhibition by a substrate analogue (acetone) show that diacetyl is reduced via an Ordered Bi-Bi mechanism, and 2,3-pentanedione by an Ordered Bi-Bi or Theorell-Chance mechanism. NADH is the leading substrate in both reactions. Affinity constants for the coenzyme and the substrates and inhibition constants for NAD, acetoin, and acetone were also calculated. This enzyme has a high affinity for NADH; Km (31-50 microM) and Ks (20-27 microM) for this compound are around one-tenth of the NADH intracellular concentration. Therefore, it must operate in vivo saturated with the coenzyme. This condition is not adequate to play the role, formerly proposed for diacetyl reductases, of regulating the equilibrium between oxidized and reduced forms of pyridine-nucleotides.  相似文献   

11.
Use of diacetyl reductase, a reduced nicotinamide adenine dinucleotide (NADH)-requiring enzyme, to eliminate diacetyl off-flavor in beer was studied. The crude enzyme was extracted from Aerobacter aerogenes and partially purified by ammonium sulfate precipitation or Sephadex chromatography. In the semipure state, the enzyme was inactivated by lyophilization; in a crude state, the lyophilized extract remained stable for at least 4 months at - 20 C. A 50% reduction in specific activity within 5 min was observed when crude diacetyl reductase was suspended (5 mg of protein/ml) in phosphate buffer at pH 5.5 or below; a similar inactivation rate was observed when the crude enzyme was dissolved in a 5% aqueous ethyl alcohol solution. Effective crude enzyme activity in beer at a natural pH of 4.1 required protection of the enzyme in 10% gelatin. Incorporation of yeast cells with the gel-protected enzyme provided regeneration of NADH. Combinations of yeast, enzyme, and gelatin were tested to obtain data analyzed by regression analysis to determine the optimal concentration of each component of the system required to reduce the level of diacetyl in spiked (0.5 ppm) beer to less than 0.12 ppm within 48 hr at 5 C. The protected enzyme system was also effective in removing diacetyl from orange juice (pH 3.8) and some distilled liquors.  相似文献   

12.
Diacetyl reductase from Kluyveromyces marxianus NRRL Y-1196 was purified 27.5-fold with a yield of 13% by ammonium sulphate fractionation, DEAE-anion exchange chromatography, hydroxyapatite chromatography and chromatofocusing. The purified enzyme was most active at pH 7.0 and exhibited optimal activity at 40°C. The K m and V max values for diacetyl were 2.5 mmol 1-1 and 0.026 mmol 1-1 min-1, respectively. The enzyme did not react with monoaldehydes or monoketones, but reduced acetoin, diacetyl and methylglyoxal with NADH as a cofactor. The enzyme had an isoelectric point (pl) of pH 5.8, and its molecular weight was 50 kDa.  相似文献   

13.
An enzyme capable of reducing acetoin in the presence of NADH was purified from Mycobacterium sp. B-009, a non-clinical bacterial strain of soil origin. The enzyme is a homotetramer and can be classified as a medium-chain alcohol dehydrogenase/reductase based on the molecular weight of the monomer. Identification of the structural gene revealed a limited distribution of homologous genes only among actinomycetes. In addition to its activity as a reductase specific for (S)-acetoin (EC 1.1.1.76), the enzyme showed both diacetyl reductase (EC 1.1.1.304) and NAD+-dependent alcohol dehydrogenase (EC 1.1.1.1) activities. (S)-Acetoin and diacetyl reductases belong to a group of short-chain alcohol dehydrogenase/reductases but do not have superior abilities to dehydrogenate monoalcohols. Thus, the purified enzyme can be readily distinguished from other enzymes. We used the dual functionality of the enzyme to effectively reduce diacetyl to (S)-acetoin, coupled with the oxidation of 1-butanol.  相似文献   

14.
Kluyveromyces marxianus had a higher specific activity of diacetyl reductase (EC 1.1.1.5) than all other organisms previously reported. The enzyme was NADH-dependent and irreversibly catalysed the conversion of diacetyl to acetoin with an optimum pH of 7.0. It was stable at 40°C but lost 50% of its activity at 50°C in 30 min. The K m and V max values for diacetyl were 1.8 mm and 0.053 mm/min, respectively.The authors are with the Department of Food Science and Technology, Comell University, Geneva, New York 14456, USA  相似文献   

15.
alpha-dicarbonyl reductase from pigeon liver catalyzes diacetyl reduction with NADPH via an ordered Bi-Bi mechanism in which the coenzyme is the leading substrate, as deduced from the inhibition pattern by products and by acetone. The activation energy of the reaction has been calculated as 16.6 kcal/mol, delta H and delta F as 15.6 and 15.3 kcal/mol, respectively, and delta S as 1 cal/mol per k. Kinetic constants obtained for substrates (KmNADPH = 15 microM, KsNADPH = 10 microM; Kmdiacetyl = 0.5 mM, Ksdiacetyl = 0.35 mM) and products (KiNADP 50 microM; Kiacetoin = 100 mM) are about 10 times lower than those reported for this enzyme in the reduction of diacetyl with NADH. This confirms that NADPH is its physiological coenzyme.  相似文献   

16.
The kinetic mechanism of diacetyl and 2,3-pentanedione reduction by diacetyl reductase from Staphylococcus aureus was investigated. The shape of the primary double reciprocal plots, the product inhibition pattern, and the features of the inhibition by a substrate analogue (acetone) show that diacetyl is reduced via an Ordered Bi-Bi mechanism, and 2,3-pentanedione by an Ordered Bi-Bi or Theorell-Chance mechanism. NADH is the leading substrate in both reactions.Affinity constants for the coenzyme and the substrates and inhibition constants for NAD, acetoin, and acetone were also calculated. This enzyme has a high affinity for NADH; Km (31–50 μM) and Ks (20–27 μM) for this compound are around one-tenth of the NADH intracellular concentration. Therefore, it must operate in vivo saturated with the coenzyme. This condition is not adequate to play the role, formerly proposed for diacetyl reductases, of regulating the equilibrium between oxidized and reduced forms of pyridine-nucleotides.  相似文献   

17.
Kinetic and physicochemical properties of hamster liver diacetyl reductase have been examined. The results of kinetic studies on the reduction of diacetyl and NADPH to acetoin and NADP+ suggest that the reaction follows an Ordered Bi Bi mechanism in which NADPH binds first before diacetyl. The enzyme is a tetrameric glycoprotein of single subunits of a molecular weight of 23,500 with a sedimentation coefficient of 6.0S. The enzyme does not contain Zn, Cu, or Fe. The amino acid composition revealed an unusually low proportion of proline residues (0.9%). p-Chloromercuriphenylsulfonate and phenylglyoxal inactivated the enzyme, but the presence of NADPH prevented the loss of activity due to thiol and arginine modification. The enzyme transferred the pro 4S hydrogen atom of NADPH to the substrate and the binding of the enzyme to NADPH resulted in a red shift of the ultraviolet absorption spectrum of the cofactor.  相似文献   

18.
The free-living spirochete Spirochaeta aurantia was nearly as susceptible to diacetyl chloramphenicol, the product of chloramphenicol acetyltransferase, as it was to chloramphenicol itself. This unexpected susceptibility to diacetyl chloramphenicol was wholly or partly the consequence of intrinsic carboxylesterase activity, as indicated by high-performance liquid chromatography, thin-layer chromatography, and microbiological assays. The esterase converted the diacetate to chloramphenicol, thus inhibiting spirochete growth. The esterase activity was cell associated, reduced by proteinase K, eliminated by boiling, and independent of the presence of either chloramphenicol or diacetyl chloramphenicol. S. aurantia extracts also hydrolyzed other esterase substrates, and two of these, alpha-napthyl acetate and 4-methylumbelliferyl acetate, identified an esterase of approximately 75 kDa in a nondenaturing gel. Carboxylesterases occur in Streptomyces species, but in this study their activity was weaker than that of S. aurantia. The S. aurantia esterase could reduce the effectiveness of cat as either a selectable marker or a reporter gene in this species.  相似文献   

19.
20.
(1) The pH dependence of the kinetic parameters of the reaction catalyzed by pigeon liver diacetyl reductase (EC 1.1.1.5) was investigated in the pH range 5.1-8.6. (2) From the results obtained it is postulated that: (a), a group of pK around 7, active in the protonated form, participates in the interaction of the enzyme with NADH and NAD. (b), a second group with a pK of 8.4, active in the protonated form too, takes part in the binding of diacetyl to E-NADH. (c) A third group of pK about 4.7-5, active in the unprotonated form, is involved at least in the dissociation of the complex E-NAD and in the attachment of diacetyl to E-NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号