首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For successful ab initio protein structure prediction, a method is needed to identify native-like structures from a set containing both native and non-native protein-like conformations. In this regard, the use of distance geometry has shown promise when accurate inter-residue distances are available. We describe a method by which distance geometry restraints are culled from sets of 500 protein-like conformations for four small helical proteins generated by the method of Simons et al. (1997). A consensus-based approach was applied in which every inter-Calpha distance was measured, and the most frequently occurring distances were used as input restraints for distance geometry. For each protein, a structure with lower coordinate root-mean-square (RMS) error than the mean of the original set was constructed; in three cases the topology of the fold resembled that of the native protein. When the fold sets were filtered for the best scoring conformations with respect to an all-atom knowledge-based scoring function, the remaining subset of 50 structures yielded restraints of higher accuracy. A second round of distance geometry using these restraints resulted in an average coordinate RMS error of 4.38 A.  相似文献   

2.
T F Havel 《Biopolymers》1990,29(12-13):1565-1585
In this paper we study the statistical geometry of ensembles of poly (L-alanine) conformations computed by several different distance geometry algorithms. Since basic theory only permits us to predict the statistical properties of such ensembles a priori when the distance constraints have a very simple form, the only constraints used for these calculations are those necessary to obtain reasonable bond lengths and angles, together with a lack of short- and long-range atomic overlaps. The geometric properties studied include the squared end-to-end distance and radius of gyration of the computed conformations, in addition to the usual rms coordinate and phi/psi angle deviations among these conformations. The distance geometry algorithms evaluated include several variations of the well-known embed algorithm, together with optimizations of the torsion angles using the ellipsoid and variable target function algorithms. The conclusions may be summarized as follows: First, the distribution with which the trial distances are chosen in most implementations of the embed algorithm is not appropriate when no long-range upper bounds on the distances are present, because it leads to unjustifiably expanded conformations. Second, chosing the trial distances independently of one another leads to a lack of variation in the degree of expansion, which in turn produces a relatively low rms square coordinate difference among the members of the ensemble. Third, when short-range steric constraints are present, torsion angle optimizations that start from conformations obtained by choosing their phi/psi angles randomly with a uniform distribution between -180 degrees and +180 degrees do not converge to conformations whose angles are uniformly distributed over the sterically allowed regions of the phi/psi plane. Finally, in an appendix we show how the sampling obtained with the embed algorithm can be substantially improved upon by the proper application of existing methodology.  相似文献   

3.
D R Ripoll  F Ni 《Biopolymers》1992,32(4):359-365
Energy refinement of the structure of a linear peptide, hirudin56-65, bound to thrombin was carried out using a conformational search method in combination with restrained minimization. Five conformations originated from nmr data and distance geometry calculations having a similar global folding pattern but quite different backbone conformations were used as the starting structures. As a result of this approach, a series of low-energy conformations compatible with a set of upper and lower bounds of interproton distances determined from transferred nuclear Overhauser effects were found. A comparison among the lowest energy conformations of each run showed that the combination of energy refinement plus distance constraints led to a very well-defined structure for both the backbone and the side chains of the last 7 residues of the polypeptide. Furthermore, the low-energy conformations generated with this technique contain a segment of 3(10)-helix involving the last 5 residues at the COOH terminal end.  相似文献   

4.
We present a hierarchical method to predict protein tertiary structure models from sequence. We start with complete enumeration of conformations using a simple tetrahedral lattice model. We then build conformations with increasing detail, and at each step select a subset of conformations using empirical energy functions with increasing complexity. After enumeration on lattice, we select a subset of low energy conformations using a statistical residue-residue contact energy function, and generate all-atom models using predicted secondary structure. A combined knowledge-based atomic level energy function is then used to select subsets of the all-atom models. The final predictions are generated using a consensus distance geometry procedure. We test the feasibility of the procedure on a set of 12 small proteins covering a wide range of protein topologies. A rigorous double-blind test of our method was made under the auspices of the CASP3 experiment, where we did ab initio structure predictions for 12 proteins using this approach. The performance of our methodology at CASP3 is reasonably good and completely consistent with our initial tests.  相似文献   

5.
We propose a new approach to the problem of determining an ensemble of protein structures with a set of interatomic distance bounds in NMR protein modeling. Similarly to X-ray crystallography, we assume that the protein has an equilibrium structure and the atoms fluctuate around their equilibrium positions. Then, the problem can be formulated as a generalized distance geometry problem, to find the equilibrium positions and maximal possible fluctuation radii for the atoms in the protein, subject to the condition that the fluctuations should be within the given distance bounds. We describe the scientific background of the work, the motivation of the new approach and the formulation of the problem. We develop a geometric buildup algorithm for an approximate solution to the problem and present some preliminary test results as a first step concept proofing. We also discuss related theoretical and computational issues and potential impacts of this work in NMR protein modeling.  相似文献   

6.
The hybrid method that combines the early stages of a distance geometry program with simulated annealing in the presence of NMR constraints was optimized to obtain structures fully consistent with the observed NMR data. This was achieved by using more restrictive bounds of the NOE constraints than those usually used in the literature and by grouping the NOEs into classes dependent on the quality of the experimental NOE data. The 'floating' stereospecific assignment introduced at the simulated annealing stage of the calculations further improved the definition of the local conformation. An improved sampling and convergence property of the hybrid method was obtained by means of fitting the substructure obtained from the distance geometry program to different conformations. Compared to the standard hybrid methods, this procedure gave superior structures for a 77 amino acid protein, acyl carrier protein from Escherichia coli.  相似文献   

7.
We have developed a method to determine the three-dimensional structure of a protein molecule from such a set of distance constraints as can be determined by nuclear magnetic resonance studies. The currently popular methods for distance geometry based on the use of the metric matrix are applicable only to small systems. The method developed here is applicable to large molecules, such as proteins, with all atoms treated explicitly. This method works in the space of variable dihedral angles and determines a three-dimensional structure by minimization of a target function. We avoid difficulties hitherto inherent in this type of approach by two new devices: the use of variable target functions; and a method of rapid calculation of the gradient of the target functions. The method is applied to the determination of the structures of a small globular protein, bovine pancreatic trypsin inhibitor, from several artificial sets of distance constraints extracted from the X-ray crystal structure of this molecule. When a good set of constraints was available for both short- and long-range distances, the crystal structure was regenerated nearly exactly. When some ambiguities, such as those expected in experimental information, are allowed, the protein conformation can be determined up to a few local deformations. These ambiguities are mainly associated with the low resolving power of the short-range information.  相似文献   

8.
Crippen GM 《Proteins》2005,60(1):82-89
Cluster distance geometry is a recent generalization of distance geometry whereby protein structures can be described at even lower levels of detail than one point per residue. With improvements in the clustering technique, protein conformations can be summarized in terms of alternative contact patterns between clusters, where each cluster contains four sequentially adjacent amino acid residues. A very simple potential function involving 210 adjustable parameters can be determined that favors the native contacts of 31 small, monomeric proteins over their respective sets of nonnative contacts. This potential then favors the native contacts for 174 small, monomeric proteins that have low sequence identity with any of the training set. A broader search finds 698 small protein chains from the Protein Data Bank where the native contacts are preferred over all alternatives, even though they have low sequence identity with the training set. This amounts to a highly predictive method for ab initio protein folding at low spatial resolution.  相似文献   

9.
Low-energy conformations of a set of tetrapeptides derived from the small protein bovine pancreatic trypsin inhibitor (BPTI) were generated by a build-up procedure from the low-energy conformations of single amino acid residues. At each stage, various-size fragments were built up from all combinations of smaller ones, the total energies were then minimized, and the low-energy conformations were retained for the next stage. The energies of the tetrapeptides were re-ordered by including the effects of hydration. No information other than the amino acid sequence was used to obtain the low-energy conformations of the hydrated tetrapeptides. The latter were then supplemented with a limited set of simulated NMR distance information, derived from the X-ray structure of BPTI, to provide a basis for building the rest of the whole protein molecule by the same procedure. A total of 189 upper bounds, plus 12 pairs of upper and lower bounds pertaining to the location of the three disulfide bonds in this molecule, were used. Four sets of conformations of the entire molecule were generated by utilizing different combinations of smaller fragments. It was possible to obtain low-energy conformations with small rms deviations, 1.1 to 1.4 A for the alpha-carbons, from the structure derived by X-ray diffraction. The average deviations of the backbone dihedral angles were also low, viz. 23 degrees to 26 degrees.  相似文献   

10.
D Hare  L Shapiro  D J Patel 《Biochemistry》1986,25(23):7456-7464
This paper reports on features of the three-dimensional structure of the d(C-G-C-A-G-A-G-C-T-C-G-C-G) self-complementary duplex (designated adenosine 13-mer), which contains symmetrical extrahelical adenosines in the interior of the helix. The majority of the protons have been assigned from two-dimensional nuclear Overhauser effect (NOESY) spectra of the adenosine 13-mer in H2O and D2O solution. The measurement of NOESY cross-peak volume integrals as a function of mixing time has yielded a set of 96 short (less than 4.5-A) proton-proton distances defined by lower and upper bounds, which have served as input parameters for a distance geometry analysis of one symmetric half of the adenosine 13-mer duplex. We demonstrate that the extrahelical adenosine stacks into the duplex for all refined structures without disruption of base pairing on either side of the modification site. The distance geometry refinement yields two classes of conformations consistent with distance measurements but which differ in orientation of the stacked extrahelical adenosine at the modification site.  相似文献   

11.
We present an automated method incorporated into a software package, FOLDER, to fold a protein sequence on a given three-dimensional (3D) template. Starting with the sequence alignment of a family of homologous proteins, tertiary structures are modeled using the known 3D structure of one member of the family as a template. Homologous interatomic distances from the template are used as constraints. For nonhomologous regions in the model protein, the lower and the upper bounds for the interatomic distances are imposed by steric constraints and the globular dimensions of the template, respectively. Distance geometry is used to embed an ensemble of structures consistent with these distance bounds. Structures are selected from this ensemble based on minimal distance error criteria, after a penalty function optimization step. These structures are then refined using energy optimization methods. The method is tested by simulating the alpha-chain of horse hemoglobin using the alpha-chain of human hemoglobin as the template and by comparing the generated models with the crystal structure of the alpha-chain of horse hemoglobin. We also test the packing efficiency of this method by reconstructing the atomic positions of the interior side chains beyond C beta atoms of a protein domain from a known 3D structure. In both test cases, models retain the template constraints and any additionally imposed constraints while the packing of the interior residues is optimized with no short contacts or bond deformations. To demonstrate the use of this method in simulating structures of proteins with nonhomologous disulfides, we construct a model of murine interleukin (IL)-4 using the NMR structure of human IL-4 as the template. The resulting geometry of the nonhomologous disulfide in the model structure for murine IL-4 is consistent with standard disulfide geometry.  相似文献   

12.
Alexandrescu AT 《Proteins》2004,56(1):117-129
Introductory biochemistry texts often note that the fold of a protein is completely defined when the dihedral angles phi and psi are known for each amino acid. This assertion was examined with torsion angle dynamics and simulated annealing (TAD/SA) calculations of protein G using only dihedral angle restraints. When all dihedral angles were restrained to within 1 degrees of the values of the X-ray structure, the TAD/SA structures gave a backbone root mean square deviation to the target of 4 A. Factors that contributed to divergence from the correct solution include deviations of peptide bonds from planarity, internal conflicts resulting from the nonuniform energies of different phi, psi combinations, and relaxation to extended conformations in the absence of long-range constraints. Simulations including hydrogen-bond restraints showed that even a few long-range contacts constrain the fold better than a complete set of accurate dihedral restraints. A procedure is described for TAD/SA calculations using hydrogen-bond restraints, idealized dihedral restraints for residues in regular secondary structures, and "hydrophobic distance restraints" derived from the positions of hydrophobic residues in the amino acid sequence. The hydrogen-bond restraints are treated as inviolable, whereas violated hydrophobic restraints are removed following reduction of restraint upper bounds from 2 to 1 times the predicted radius of gyration. The strategy was tested with simulated restraints from X-ray structures of proteins from different fold classes and NMR data for cold shock protein A that included only backbone chemical shifts and hydrogen bonds obtained from a long-range HNCO experiment.  相似文献   

13.
We present an efficient new algorithm that enumerates all possible conformations of a protein that satisfy a given set of distance restraints. Rapid growth of all possible self-avoiding conformations on the diamond lattice provides construction of alpha-carbon representations of a protein fold. We investigated the dependence of the number of conformations on pairwise distance restraints for the proteins crambin, pancreatic trypsin inhibitor, and ubiquitin. Knowledge of between one and two contacts per monomer is shown to be sufficient to restrict the number of candidate structures to approximately 1,000 conformations. Pairwise RMS deviations of atomic position comparisons between pairs of these 1,000 structures revealed that these conformations can be grouped into about 25 families of structures. These results suggest a new approach to assessing alternative protein folds given a very limited number of distance restraints. Such restraints are available from several experimental techniques such as NMR, NOESY, energy transfer fluorescence spectroscopy, and crosslinking experiments. This work focuses on exhaustive enumeration of protein structures with emphasis on the possible use of NOESY-determined distance restraints.  相似文献   

14.
Clustering is one of the most powerful tools in computational biology. The conventional wisdom is that events that occur in clusters are probably not random. In protein docking, the underlying principle is that clustering occurs because long-range electrostatic and/or desolvation forces steer the proteins to a low free-energy attractor at the binding region. Something similar occurs in the docking of small molecules, although in this case shorter-range van der Waals forces play a more critical role. Based on the above, we have developed two different clustering strategies to predict docked conformations based on the clustering properties of a uniform sampling of low free-energy protein-protein and protein-small molecule complexes. We report on significant improvements in the automated prediction and discrimination of docked conformations by using the cluster size and consensus as a ranking criterion. We show that the success of clustering depends on identifying the appropriate clustering radius of the system. The clustering radius for protein-protein complexes is consistent with the range of the electrostatics and desolvation free energies (i.e., between 4 and 9 Angstroms); for protein-small molecule docking, the radius is set by van der Waals interactions (i.e., at approximately 2 Angstroms). Without any a priori information, a simple analysis of the histogram of distance separations between the set of docked conformations can evaluate the clustering properties of the data set. Clustering is observed when the histogram is bimodal. Data clustering is optimal if one chooses the clustering radius to be the minimum after the first peak of the bimodal distribution. We show that using this optimal radius further improves the discrimination of near-native complex structures.  相似文献   

15.
P J Kraulis  T A Jones 《Proteins》1987,2(3):188-201
A method to build a three-dimensional protein model from nuclear magnetic resonance (NMR) data using fragments from a data base of crystallographically determined protein structures is presented. The interproton distances derived from the nuclear Overhauser effect (NOE) data are compared to the precalculated distances in the known protein structures. An efficient search algorithm is used, which arranges the distances in matrices akin to a C alpha diagonal distance plot, and compares the NOE distance matrices for short sequential zones of the protein to the data base matrices. After cluster analysis of the fragments found in this way, the structure is built by aligning fragments in overlapping zones. The sequentially long-range NOEs cannot be used in the initial fragments search but are vital to discriminate between several possible combinations of different groups of fragments. The method has been tested on one simulated NOE data set derived from a crystal structure and one experimental NMR data set. The method produces models that have good local structure, but may contain larger global errors. These models can be used as the starting point for further refinement, e.g., by restrained molecular dynamics or interactive graphics.  相似文献   

16.
Hidetoshi Kono  Junta Doi 《Proteins》1994,19(3):244-255
Globular proteins have high packing densities as a result of residue side chains in the core achieving a tight, complementary packing. The internal packing is considered the main determinant of native protein structure. From that point of view, we present here a method of energy minimization using an automata network to predict a set of amino acid sequences and their side-chain conformations from a desired backbone geometry for de novo design of proteins. Using discrete side-chain conformations, that is, rotamers, the sequence generation problem from a given backbone geometry becomes one of combinatorial problems. We focused on the residues composing the interior core region and predicted a set of amino acid Sequences and their side-chain conformations only from a given backbone geometry. The kinds of residues were restricted to six hydrophobic amino acids (Ala, Ile, Met, Leu, Phe, and Val) because the core regions are almost always composed of hydrophobic residues. The obtained sequences were well packed as was the native sequence. The method can be used for automated sequence generation in the de novo design of proteins. © 1994 Wiley-Liss, Inc.  相似文献   

17.
We describe a novel method to generate ensembles of conformations of the main-chain atoms [N, C(alpha), C, O, Cbeta] for a sequence of amino acids within the context of a fixed protein framework. Each conformation satisfies fundamental stereo-chemical restraints such as idealized geometry, favorable phi/psi angles, and excluded volume. The ensembles include conformations both near and far from the native structure. Algorithms for effective conformational sampling and constant time overlap detection permit the generation of thousands of distinct conformations in minutes. Unlike previous approaches, our method samples dihedral angles from fine-grained phi/psi state sets, which we demonstrate is superior to exhaustive enumeration from coarse phi/psi sets. Applied to a large set of loop structures, our method samples consistently near-native conformations, averaging 0.4, 1.1, and 2.2 A main-chain root-mean-square deviations for four, eight, and twelve residue long loops, respectively. The ensembles make ideal decoy sets to assess the discriminatory power of a selection method. Using these decoy sets, we conclude that quality of anchor geometry cannot reliably identify near-native conformations, though the selection results are comparable to previous loop prediction methods. In a subsequent study (de Bakker et al.: Proteins 2003;51:21-40), we demonstrate that the AMBER forcefield with the Generalized Born solvation model identifies near-native conformations significantly better than previous methods.  相似文献   

18.
A rigid domain, defined here as a tertiary structure common to two or more different protein conformations, can be identified numerically from atomic coordinates by finding sets of residues, one in each conformation, such that the distance between any two residues within the set belonging to one conformation is the same as the distance between the two structurally equivalent residues within the set belonging to any other conformation. The distance between two residues is taken to be the distance between their respective α carbon atoms. With the methods of this paper we have found in the deoxy and oxy conformations of the human hemoglobin α1β1 dimer a rigid domain closely related to that previously identified by Baldwin and Chothia (J. Mol. Biol. 129:175–220,1979). We provide two algorithms, both using the difference-distance matrix, with which to search for rigid domains directly from atomic coordinates. The first finds all rigid domains in a protein but has storage and processing demands that become prohibitively large with increasing protein size. The second, although not necessarily finding every rigid domain, is computationally tractable for proteins of any size. Because of its efficiency we are able to search protein conformations recursively for groups of non-intersecting domains. Different protein conformations, when aligned by superimposing their respective domain structures; can be examined for structural differences in regions complementing a rigid domain. © 1995 Wiley-Liss, Inc.  相似文献   

19.
A set of conformational restraints derived from nuclear magnetic resonance (n.m.r.) measurements on solutions of the basic pancreatic trypsin inhibitor (BPTI) was used as input for distance geometry calculations with the programs DISGEO and DISMAN. Five structures obtained with each of these algorithms were systematically compared among themselves and with the crystal structure of BPTI. It is clear that the protein architecture observed in single crystals of BPTI is largely preserved in aqueous solution, with local structural differences mainly confined to the protein surface. The results confirm that protein conformations determined in solution by combined use of n.m.r. and distance geometry are a consequence of the experimental data and do not depend significantly on the algorithm used for the structure determination. The data obtained further provide an illustration that long intramolecular distances in proteins, which are comparable with the radius of gyration, are defined with high precision by relatively imprecise nuclear Overhauser enhancement measurements of a large number of much shorter distances.  相似文献   

20.
We develop a computationally efficient method to simulate the transition of a protein between two conformations. Our method is based on a coarse-grained elastic network model in which distances between spatially proximal amino acids are interpolated between the values specified by the two end conformations. The computational speed of this method depends strongly on the choice of cutoff distance used to define interactions as measured by the density of entries of the constant linking/contact matrix. To circumvent this problem we introduce the concept of using a cutoff based on a maximum number of nearest neighbors. This generates linking matrices that are both sparse and uniform, hence allowing for efficient computations that are independent of the arbitrariness of cutoff distance choices. Simulation results demonstrate that the method developed here reliably generates feasible intermediate conformations, because our method observes steric constraints and produces monotonic changes in virtual bond and torsion angles. Applications are readily made to large proteins, and we demonstrate our method on lactate dehydrogenase, citrate synthase, and lactoferrin. We also illustrate how this framework can be used to complement experimental techniques that partially observe protein motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号