首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The high-resolution structure of bovine trypsin inhibited with DFP2 was determined by Stroud et al. (1971 and R. M. Stroud, L. M. Kay, A. Cooper &; R. E. Dickerson, Abstr. 8th Int. Congr. Biochem. 1970). The experiments reported here were designed to study the specific side-chain binding pocket of trypsin using benzamidine, which is a competitive, specific inhibitor of trypsin. High-resolution electron density syntheses and difference syntheses unambiguously identify the side-chain binding pocket, which normally recognizes and binds the side chains of arginine or lysine during proteolysis. Several important conformational differences in the protein structure are apparent between DIP- and BA-trypsins, and these are discussed with particular reference to inhibition, the binding of lysine and arginine, subsequent orientation of the target at the active site, and the enhancement of tryptic activity towards non-specific substrates seen on binding small alkyl amines or guanidines in the specific binding pocket.The BA-trypsin structure provides a good model for the binding of real substrate side chains to trypsin during catalysis, explaining the sharp trypsin specificity for lysine or arginine side chains (Weinstein &; Doolittle, 1972) and the lack of specificity for stereochemically different basic side chains. Benzamidine is shown to inhibit trypsin by steric interference with the inferred position of good substrates, even when they do not carry any side chain.Apart from the substitution of benzamidine and DIP, the most significant differences between DIP-trypsin and BA-trypsin involve complete repositioning of the side chain of Gln192, alterations in the side chains of Asp102, His57 and Ser195 at the active site, and changes in the solvent structure around this region. The carboxyl group of Asp189, which is responsible for trypsin specificity, shows no movement on binding benzamidine. The amidinium cation of benzamidine forms a salt bridge with Asp189 in BA-trypsin; a similar salt bridge can be constructed between the side chains of model substrates with lysyl or arginyl side chains and Aspl89. The γ-oxygen of Ser190 is displaced by a 120 ° rotation about its αβ bond on binding benzamidine and the binding pocket closes to sandwich the inhibitor ring between the peptide planes of 190–191 and 215–216. These contacts are presumably found in the enzyme-substrate complex with specific substrates.The active site structure at pH 8.0 is discussed with particular reference to the microscopic pKa values of Asp102 and His57, the pKa of the Asp-His system, and the mechanistic consequences of these assignments.  相似文献   

2.
Helical conformations of infinite polymer chains may be described by the helical parameters, d and θ (the translation along the helix axis and the angle of rotation about the axis per repeat unit), pi (the distance of the ith atom from the axis), dij, and dij (the translation along the axis and the angle of rotation, respectively, on passing from the ith atom to the jth). A general method has been worked out for calculating all those helical parameters from the bond lengths, bond angles, and internal-rotation angles. The positions of the main chain and side chain atoms with respect to the axis may also be calculated. All the equations are applicable to any helical polymer chain and are readily programmed for electronic computers. A method is also presented for calculating the partial derivatives of helical parameters with respect to molecular parameters.  相似文献   

3.
The conformations of a pentapeptide L -His-L -Arg-L -Trp-Gly with weak adrenocorticotropin (ACTH) activity and its analogs, where each L -amino acid residue is substituted by D -residue, were investigated by means of proton and carbon-13 nmr spectroscopy on their DMSO-d6 solutions. The spectra indicated the presence of slowly exchangeable conformation isomers for D -Phe and D -Arg analogs, due to steric hindrance around the arginine residue. The activation energy of the hindered rotation of the arginine side chain was estimated to be more than 19 ~ 20 kcal/mol. Spin-lattice relaxation times of carbon-13 nuclei also indicated slow segmental motion of the arginine side chain of the D analogs. An effect on proton chemical shifts by intermolecular electrostatic interaction between the arginine side chain and the C terminal carboxylic residue was observed. We did not observe, however, a direct correlation between pentapeptide activity and molecular conformation at this stage of the experiments.  相似文献   

4.
It is shown that cholesterol may interact with some substances containing the guanidine group (guanidine itself, arginine, metformin and dodecylguanidine bromide) and with arginine-rich proteins--apoproteins A-I and E. In the latter case the interaction produces the formation of cholesterol-apoprotein complexes. Analysis of such complexes has shown that one apo A-I molecule binds 17-22 and one apo E molecule binds 30-35 sterol molecules, which approximately corresponds to the amount of arginine residues in these proteins. Formation of cholesterol-apoprotein complexes has been suggested to occur due to: (1) formation of hydrogen bond and/or ion-dipole interaction between cholesterol hydroxyl and guanidine groups of the apoprotein arginine residues and (2) hydrophobic interaction of the cholesterol aliphatic chain with nonpolar side chains of the amino acids occupying the third position from arginine in the protein molecule.  相似文献   

5.
In previous kinetic studies of Escherichia coli aspartate aminotransferase, it was determined that some substitutions of conserved cysteine 191, which is located outside of the active site, altered the kinetic parameters of the enzyme (Gloss,L.M., Spencer,D. E. and Kirsch,J.F., 1996, Protein Struct. Funct. Genet., 24, 195-208). The mutations resulted in an alkaline shift of 0.6-0.8 pH units for the pK(a) of the internal aldimine between the PLP cofactor and Lys258. The change in the pK(a) affected the pH dependence of the k(cat)/K(m) (aspartate) values for the mutant enzymes. To help to understand these observations, crystal structures of five mutant forms of E.coli aspartate aminotransferase (the maleate complexes of C191S, C191F, C191Y and C191W, and C191S without maleate) were determined at about 2 A resolution in the presence of the pyridoxal phosphate cofactor. The overall three-dimensional fold of each mutant enzyme is the same as that of the wild-type protein, but there is a rotation of the mutated side chain around its C(alpha)-C(beta) bond. This side chain rotation results in a change in the pattern of hydrogen bonding connecting the mutant residue and the protonated Schiff base of the cofactor, which could account for the altered pK(a) of the Schiff base imine nitrogen that was reported previously. These results demonstrate how residues outside the active site can be important in helping determine the subtleties of the active site amino acid geometries and interactions and how mutations outside the active site can have effects on catalysis. In addition, these results help explain the surprising result previously reported that, for some mutant proteins, replacement of a buried cysteine with an aromatic side chain did not destabilize the protein fold. Instead, rotation around the C(alpha)-C(beta) bond allowed each large aromatic side chain to become buried in a nearby pocket without large changes in the enzyme's backbone geometry.  相似文献   

6.
The substrate specificity of rice embryo benzoyl-L-argininep-nitroanilide hydrolase (BAPAase) was examined. No endopeptidaseactivity toward protein substrates was detectable. Small peptides(less than 8 residues) and amide, ester substrates, however,were hydrolyzed very well at the carboxyl side of the lysineor arginine residue. No other peptide bond was hydrolyzed. TheN-terminal arginine of the substrates was released very slowly.Peptides with lysine or arginine penultimate to the C-terminalposition were hydrolyzed well and released an amino acid. Theoxidized insulin B chain (30 residues) was cleaved very slowlyat the C-terminal Lys-Ala bond, whereas an Arg-Gly bond at aninner position was not cleaved. The hydrolytic rate increasedafter the chain length was shortened by chymotryptic digestion.These results show that the rice embryo BAPAase is a novel enzymewhich has mixed endopeptidase-carboxypeptidase activity towardthe Arg-X and Lys-X bonds of small peptides, a characteristicintermediate between trypsin and serine carboxypeptidase. Thisenzyme may act in the breakdown of small peptides that havephysiological functions. (Received May 26, 1984; Accepted August 29, 1984)  相似文献   

7.
The side chain conformations of α-helical poly(L -glutamic acid) esters $ \rlap{--}[NHCH(CH_2 CH_2 COOR)CO\rlap{--}]_x $, carrying a homologous series of ester residues such as R = ? (CH2)n? with n = 1–3, have been studied in the lyotropic liquid crystalline state (chloroform 20 v/v%) by the deuterium nmr method. In order to study the surface chirality of the molecule, the phenyl groups situated at the terminal of the side chain have been deuterated. From the observed deuterium quadrupolar splittings, the average inclination θp of the para-axis of the phenyl group with respect to the α-helical backbone was elucidated. A distinct odd–even oscillation in the quantity such as 〈 cos2 θp〉 was observed with the number of methylene units n. A rotational isomeric state analysis has indicated that the observed orientational correlation arises from the interdependence of the neighboring bond rotation along the side chain. Preference of the “extended” conformations is also enhanced by the mutual conformational exclusion of neighboring side chains.  相似文献   

8.
Doig AJ 《Biophysical chemistry》1996,61(2-3):131-141
The absolute Gibbs energy, enthalpy and entropy of each of the internal rotations found in protein side chains has been calculated. The calculation requires the moments of inertia of the side chains about each bond, the potential energy barrier and the symmetry number and gives the maximum possible thermodynamic consequences of restricting side chain motion when a protein folds. Hindering side chain internal rotations is unfavourable in terms of Gibbs energy and entropy; it is enthalpically favourable at 0 K. At room temperature, it is estimated that the adverse entropy of hindering buried side chain internal rotation is only 25% of the absolute entropy. The difference between absolute entropies in the folded and unfolded states gives the entropy change for folding. The estimated Gibbs energy change for restricting each residue correlates moderately well with the probability of that residue being found on the folded protein surface, rather than in the protein interior (where motion is restricted).  相似文献   

9.
Different types of dipeptide building units containing N- or C-terminal arginine were prepared for synthesis of the backbone cyclic analogues of the peptide hormone bradykinin (BK: Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg). For cyclization in the N-terminal sequence N-carboxyalkyl and N-aminoalkyl functionalized dipeptide building units were synthesized. In order to avoid lactam formation during the condensation of the N-terminal arginine to the N-alkylated amino acids at position 2, the guanidino function has to be deprotected. The best results were obtained by coupling Z-Arg(Z)2-OH with TFFH/collidine in DCM. Another dipeptide building unit with an acylated reduced peptide bond containing C-terminal arginine was prepared to synthesize BK-analogues with backbone cyclization in the C-terminus. To achieve complete condensation to the resin and to avoid side reactions during activation of the arginine residue, this dipeptide unit was formed on a hydroxycrotonic acid linker. HYCRAM technology was applied using the Boc-Arg(Alloc)2-OH derivative and the Fmoc group to protect the aminoalkyl function. The reduced peptide bond was prepared by reductive alkylation of the arginine derivative with the Boc-protected amino aldehyde, derived from Boc-Phe-OH. The best results for condensation of the branching chain to the reduced peptide bond were obtained using mixed anhydrides. Both types of dipeptide building units can be used in solid-phase synthesis in the same manner as amino acid derivatives.  相似文献   

10.
The structural implications arising from the observation (set forth in the preceding paper) that the charge density of a single-stranded randomly coiling polynucleotide chain is approximately equal to that of one strand of the familiar double helix are here examined. A computational scheme is described to obtain (using bond lengths, valence bond angles, and internal rotation angles) the mean phosphate–phosphate spacing parameter b along the chain axes of any single-stranded polynucleotide molecule. Attention is then focused upon the computed interphosphate spacing associated with both the theoretical randomly coiling polynucleotide that reproduces the observed experimental unperturbed dimensions and the familiar single-stranded helix. The calculations clearly demonstrate that the parameter b only weakly reflects the spatial configuration of the chain. The approximate equivalence of the b values associated with the single-stranded helix and the unperturbed randomly coiling polynucleotide is not indicative of strong configurational similarities between the two forms. The familiar helix is composed of a sequence of identically conformed compact structural residues while the random coil is characterized by a variety of chain-repeating residues of which a large proportion are extended units.  相似文献   

11.
Ohta K  Masuda T  Ide N  Kitabatake N 《The FEBS journal》2008,275(14):3644-3652
Thaumatin is an intensely sweet-tasting protein. To identify the critical amino acid residue(s) responsible for elicitation of the sweetness of thaumatin, we prepared mutant thaumatin proteins, using Pichia pastoris, in which alanine residues were substituted for lysine or arginine residues, and the sweetness of each mutant protein was evaluated by sensory analysis in humans. Four lysine residues (K49, K67, K106 and K163) and three arginine residues (R76, R79 and R82) played significant roles in thaumatin sweetness. Of these residues, K67 and R82 were particularly important for eliciting the sweetness. We also prepared two further mutant thaumatin I proteins: one in which an arginine residue was substituted for a lysine residue, R82K, and one in which a lysine residue was substituted for an arginine residue, K67R. The threshold value for sweetness was higher for R82K than for thaumatin I, indicating that not only the positive charge but also the structure of the side chain of the arginine residue at position 82 influences the sweetness of thaumatin, whereas only the positive charge of the K67 side chain affects sweetness.  相似文献   

12.
ArtJ is the substrate-binding component (receptor) of the ATP-binding cassette (ABC) transport system ArtJ-(MP)2 from the thermophilic bacterium Geobacillus stearothermophilus that is specific for arginine, lysine, and histidine. The highest affinity is found for arginine (Kd = 0.039(±0.014) μM), while the affinities for lysine and histidine are about tenfold lower. We have determined the X-ray structures of ArtJ liganded with each of these substrates at resolutions of 1.79 Å (arginine), 1.79 Å (lysine), and 2.35 Å (histidine), respectively. As found for other solute receptors, the polypeptide chain is folded into two distinct domains (lobes) connected by a hinge. The interface between the lobes forms the substrate-binding pocket whose geometry is well preserved in all three ArtJ/amino acid complexes. Structure-derived mutational analyses indicated the crucial role of a region in the carboxy-terminal lobe of ArtJ in contacting the transport pore Art(MP)2 and revealed the functional importance of Gln132 and Trp68. While variant Gln132Leu exhibited lower binding affinity for arginine but no binding of lysine and histidine, the variant Trp68Leu had lost binding activity for all three substrates. The results are discussed in comparison with known structures of homologous proteins from mesophilic bacteria.  相似文献   

13.
A combined experimental and computational study is performed for arginine side chain stacking with the protein α‐helix. Theremostability measurements of Aristaless homeodomain, a helical protein, suggest that mutating the arginine residue R106, R137 or R141, which has the guanidino side chain stacking with the peptide plane, to alanine, destabilizes the protein. The R‐PP stacking has an energy of ~0.2‐0.4 kcal/mol. This stacking interaction mainly comes from dispersion and electrostatics, based on MP2 calculations with the energy decomposition analysis. The calculations also suggest that the stacking stabilizes 2 backbone‐backbone h‐bonds (ii‐4 and i‐3→i‐7) in a cooperative way. Desolvation and electrostatic polarization are responsible for cooperativity with the ii‐4 and i‐3→i‐7 h‐bonds, respectively. This cooperativity is supported by a protein α‐helices h‐bond survey in the pdb databank where stacking shortens the corresponding h‐bond distances.  相似文献   

14.
Computational design of new active sites has generally proceeded by geometrically defining interactions between the reaction transition state(s) and surrounding side‐chain functional groups which maximize transition‐state stabilization, and then searching for sites in protein scaffolds where the specified side‐chain–transition‐state interactions can be realized. A limitation of this approach is that the interactions between the side chains themselves are not constrained. An extensive connected hydrogen bond network involving the catalytic residues was observed in a designed retroaldolase following directed evolution. Such connected networks could increase catalytic activity by preorganizing active site residues in catalytically competent orientations, and enabling concerted interactions between side chains during catalysis, for example, proton shuffling. We developed a method for designing active sites in which the catalytic side chains, in addition to making interactions with the transition state, are also involved in extensive hydrogen bond networks. Because of the added constraint of hydrogen‐bond connectivity between the catalytic side chains, to find solutions, a wider range of interactions between these side chains and the transition state must be considered. Our new method starts from a ChemDraw‐like two‐dimensional representation of the transition state with hydrogen‐bond donors, acceptors, and covalent interaction sites indicated, and all placements of side‐chain functional groups that make the indicated interactions with the transition state, and are fully connected in a single hydrogen‐bond network are systematically enumerated. The RosettaMatch method can then be used to identify realizations of these fully‐connected active sites in protein scaffolds. The method generates many fully‐connected active site solutions for a set of model reactions that are promising starting points for the design of fully‐preorganized enzyme catalysts.  相似文献   

15.
Protein disulfide isomerase (PDI) plays a central role in disulfide bond formation in the endoplasmic reticulum. It is implicated both in disulfide bond formation and in disulfide bond reduction and isomerization. To be an efficient catalyst of all three reactions requires complex mechanisms. These include mechanisms to modulate the pKa values of the active-site cysteines of PDI. Here, we examined the role of arginine 120 in modulating the pKa values of these cysteines. We find that arginine 120 plays a significant role in modulating the pKa of the C-terminal active-site cysteine in the a domain of PDI and plays a role in determining the reactivity of the N-terminal active-site cysteine but not via direct modulation of its pKa. Mutation of arginine 120 and the corresponding residue, arginine 461, in the a′ domain severely reduces the ability of PDI to catalyze disulfide bond formation and reduction but enhances the ability to catalyze disulfide bond isomerization due to the formation of more stable PDI-substrate mixed disulfides. These results suggest that the modulation of pKa of the C-terminal active cysteine by the movement of the side chain of these arginine residues into the active-site locales has evolved to allow PDI to efficiently catalyze both oxidation and isomerization reactions.  相似文献   

16.
Baker HM  He QY  Briggs SK  Mason AB  Baker EN 《Biochemistry》2003,42(23):7084-7089
Human transferrin is a serum protein whose function is to bind Fe(3+) with very high affinity and transport it to cells, for delivery by receptor-mediated endocytosis. Structurally, the transferrin molecule is folded into two globular lobes, representing its N-terminal and C-terminal halves, with each lobe possessing a high-affinity iron binding site, in a cleft between two domains. Central to function is a highly conserved set of iron ligands, including an aspartate residue (Asp63 in the N-lobe) that also hydrogen bonds between the two domains and an arginine residue (Arg124 in the N-lobe) that binds an iron-bound carbonate ion. To further probe the roles of these residues, we have determined the crystal structures of the D63E and R124A mutants of the N-terminal half-molecule of human transferrin. The structure of the D63E mutant, determined at 1.9 A resolution (R = 0.245, R(free) = 0.261), showed that the carboxyl group still binds to iron despite the larger size of the Glu side chain, with some slight rearrangement of the first turn of alpha-helix residues 63-72, to which it is attached. The structure of the R124A mutant, determined at 2.4 A resolution (R = 0.219, R(free) = 0.288), shows that the loss of the arginine side chain results in a 0.3 A displacement of the carbonate ion, and an accompanying movement of the iron atom. In both mutants, the iron coordination is changed slightly, the principal change being in each case a lengthening of the Fe-N(His249) bond. Both mutants also release iron more readily than the wild type, kinetically and in terms of acid lability of iron binding. We attribute this to more facile protonation of the synergistically bound carbonate ion, in the case of R124A, and to strain resulting from the accommodation of the larger Glu side chain, in the case of D63E. In both cases, the weakened Fe-N(His) bond may also contribute, consistent with protonation of the His ligand being an early intermediate step in iron release, following the protonation of the carbonate ion.  相似文献   

17.
Complex formation between the side chain of arginine and nucleic acid bases has been investigated by proton magnetic resonance in dimethylsulfoxide. Simultaneous formation of two hydrogen bonds leads to a selectivity of arginine interaction towards cytosine and guanine. A comparison is made of the interaction of arginine side chain with nucleic acid bases, phosphate and carboxylate anions. It is shown that interaction between carboxylate and arginine is stronger than between phosphate and arginine. These results are discussed with respect to the selective recognition of nucleic acid bases by arginine side chains and by the arginyl-glutamyl ion pair which could form in proteins interacting with nucleic acids.  相似文献   

18.
The initial step of tetrapyrrole biosynthesis in Escherichia coli involves the NADPH-dependent reduction by glutamyl-tRNA reductase (GluTR) of tRNA-bound glutamate to glutamate-1-semialdehyde. We evaluated the contribution of the glutamate moiety of glutamyl-tRNA to substrate specificity in vitro using a range of substrates and enzyme variants. Unexpectedly, we found that tRNA(Glu) mischarged with glutamine was a substrate for purified recombinant GluTR. Similarly unexpectedly, the substitution of amino acid residues involved in glutamate side chain binding (S109A, T49V, R52K) or in stabilizing the arginine 52 glutamate interaction (glutamate 54 and histidine 99) did not abrogate enzyme activity. Replacing glutamine 116 and glutamate 114, involved in glutamate-enzyme interaction near the aminoacyl bond to tRNA(Glu), by leucine and lysine, respectively, however, did abolish reductase activity. We thus propose that the ester bond between glutamate and tRNA(Glu) represents the crucial determinant for substrate recognition by GluTR, whereas the necessity for product release by a 'back door' exit allows for a degree of structural variability in the recognition of the amino acid moiety. Analyzing the esterase activity, which occured in the absence of NADPH, of GluTR variants using the substrate 4-nitrophenyl acetate confirmed the crucial role of cysteine 50 for thioester formation. Finally, the GluTR variant Q116L was observed to lack reductase activity whereas esterase activity was retained. Structure-based molecular modeling indicated that glutamine 116 may be crucial in positioning the nicotinamide group of NADPH to allow for productive hydride transfer to the substrate. Our data thus provide new information about the distinct function of active site residues of GluTR from E. coli.  相似文献   

19.
Four arginine ester hydrolases, ME-1, 2, 3 and 4 from the venom of Trimeresurus mucrosquamatus had been isolated and characterized by Sugihara et al. (1980, 1981, 1982, 1983). Immunologically, ME-1, 2, 3 and 4 are identical. The four enzymes hydrolyzed Pro-Phe-Arg-MCA and z-Phe-Arg-MCA. Furthermore, ME-2 slightly hydrolyzed Boc-Val-Pro-Arg-MCA, Boc-Phe-Ser-Arg-MCA and Boc-Ile-Glu-Gly-Arg-MCA. ME-1 cleaved almost simultaneously the Arg(22)-Gly(23) and Phe(25)-Tyr(26) bond of oxidized insulin B chain. ME-2 and 3 also hydrolyzed the same bond of insulin B chain, but the activity was not as potent as ME-1. ME-4 did not cleave the substrate. The four enzymes hydrolyzed C-terminal of arginine in the biologically active peptides. Four arginine ester hydrolases showed fibrinogenolytic activity. ME-1 and 2 first cleaved B beta-chain and then A alpha-chain. On the contrary, ME-3 and 4 cleaved A alpha- and B beta-chain simultaneously. The four enzymes also hydrolyzed fibrinogen in plasma cleaving B beta- and gamma-chain and slightly digesting A alpha-chain. The various inhibitors affected TAME (tosyl-arginine-methylester) and the fibrinogen hydrolytic activity of the four enzymes. All four enzymes had fibrinolytic activity.  相似文献   

20.
Edwin Haslam 《Phytochemistry》1977,16(11):1625-1640
The occurrence and significance of procyanidins in the plant kingdom are reviewed. Stages in the elucidation of the structure and the stereochemistry of the procyanidins are outlined. Preferred helical conformations for the procyanidins, arising from the steric hindrance to rotation about the interflavan bond, are described. Biosynthetic studies are discussed and a theory of procyanidin metabolism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号