首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate-specific antigen (PSA), produced by prostate cells, provides an excellent serum marker for prostate cancer. It belongs to the human kallikrein family of enzymes, a second prostate-derived member of which is human glandular kallikrein-1 (hK2). Active PSA and hK2 are both 237-residue kallikrein-like proteases, based on sequence homology. An hK2 model structure based on the serine protease fold is presented and compared to PSA and six other serine proteases in order to analyze in depth the role of the surface-accessible loops surrounding the active site. The results show that PSA and hK2 share extensive structural similarity and that most amino acid replacements are centered on the loops surrounding the active site. Furthermore, the electrostatic potential surfaces are very similar for PSA and hK2. PSA interacts with at least two serine protease inhibitors (serpins): alpha-1-antichymotrypsin (ACT) and protein C inhibitor (PCI). Three-dimensional model structures of the uncleaved ACT molecule were developed based upon the recent X-ray structure of uncleaved antithrombin. The serpin was docked both to PSA and hK2. Amino acid replacements and electrostatic complementarities indicate that the overall orientation of the proteins in these complexes is reasonable. In order to investigate PSA's heparin interaction sites, electrostatic computations were carried out on PSA, hK2, protein C, ACT, and PCI. Two heparin binding sites are suggested on the PSA surface and could explain the enhanced complex formation between PSA and PCI, while inhibiting the formation of the ACT-PSA complex, PSA, hK2, and their preliminary complexes with ACT should facilitate the understanding and prediction of structural and functional properties for these important proteins also with respect to prostate diseases.  相似文献   

2.
This paper explores the possibility that neutrophil-derived DNA interferes with the inhibition of neutrophil cathepsin G (cat G) and proteinase 3 by the lung antiproteinases alpha(1)-proteinase inhibitor (alpha(1)PI), alpha(1)-antichymotrypsin (ACT), and mucus proteinase inhibitor (MPI). A 30-base pair DNA fragment ((30bp)DNA), used as a model of DNA, tightly binds cat G (K(d), 8.5 nM) but does not react with proteinase 3, alpha(1)PI, ACT, and MPI at physiological ionic strength. The polynucleotide is a partial noncompetitive inhibitor of cat G whose K(i) is close to K(d). ACT and alpha(1)PI are slow binding inhibitors of the cat G-(30bp)DNA complex whose second-order rate constants of inhibition are 2300 M(-1) s(-1) and 21 M(-1) s(-1), respectively, which represents a 195-fold and a 3190-fold rate deceleration. DNA thus renders cat G virtually resistant to inhibition by these irreversible serpins. On the other hand, (30bp)DNA has little or no effect on the reversible inhibition of cat G by MPI or chymostatin or on the irreversible inhibition of cat G by carbobenzoxy-Gly-Leu-Phe-chloromethylketone. The polynucleotide neither inhibits proteinase 3 nor affects its rate of inhibition by alpha(1)PI. These findings suggest that cat G may cause lung tissue destruction despite the presence of antiproteinases.  相似文献   

3.
Prostate specific antigen (PSA) and human glandular kallikrein 2 (hK2), produced essentially by the prostate gland, are 237-amino acid monomeric proteins, with 79% identity in primary structure. Twenty-five anti-PSA monoclonal antibodies (Mabs) were studied for binding to a large array of synthetic linear peptides selected from computer models of PSA and hK2, as well as to biotinylated peptides covering the entire PSA sequence. Sixteen of the Mabs were bound to linear peptides forming four independent binding regions (I-IV). Binding region I was localized to amino acid residues 1-13 (identical sequence for PSA and hK2), II (a and b) was localized to residues 53-64, III (a and b) was localized to residues 80-91 (= kallikrein loop), and IV was localized to residues 151-164. Mabs binding to regions I and IIa were reactive with free PSA, PSA-ACT complex, and with hK2; Mabs binding to regions IIb, IIIa, and IV were reactive with free PSA and PSA-ACT complex, but unreactive with hK2; Mabs binding to region IIIb detected free PSA only. All Mabs tested (n = 7) specific for free PSA reacted with kallikrein loop (binding region IIIb). The presence of Mabs interacting with binding region I did not inhibit the catalytic activity of PSA, whereas Mabs interacting with other binding regions inhibited the catalysis. Theoretical model structures of PSA, hK2, and the PSA-ACT complex were combined with the presented data to suggest an overall orientation of PSA with regard to ACT.  相似文献   

4.
Prostate-specific antigen (PSA) is one of the three most abundant prostatic-secreted proteins in human semen. It is a serine proteinase that, in its primary structure, manifests extensive similarities with that of the Arg-restricted glandular kallikrein-like proteinases. When isolated from semen by the addition of chromatography on aprotinin-Sepharose to a previously described procedure, PSA displayed chymotrypsin-like activity and cleaved semenogelin and the semenogelin-related proteins in a rapid and characteristic pattern, but had no trypsin-like activity. About one third of the purified protein was found to be enzymatically inactive, due to cleavage carboxy-terminal of Lys145. Active PSA formed SDS-stable complexes with alpha 1-antichymotrypsin, alpha 2-macroglobulin-analogue pregnancy zone protein. PSA formed inhibitory complexes with alpha 1-antichymotrypsin at a molar ratio of 1:1, a reaction in which PSA cleaved the inhibitor in a position identical to that reported from the reaction between chymotrypsin and alpha 1-antichymotrypsin. The formation of stable complexes between PSA and alpha 1-antichymotrypsin occurred at a much slower rate than that between chymotrypsin and alpha 1-antichymotrypsin, and at a similar or slightly slower rate than that between PSA and alpha 2-macroglobulin. When added to normal blood plasma in vitro, active PSA formed stable complexes both with alpha 2-macroglobulin and alpha 1-antichymotrypsin. This complex formation may be a crucial determinant of the turnover of active PSA in intercellular fluid or blood plasma in vivo.  相似文献   

5.
Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA.  相似文献   

6.
7.
Prostate-specific antigen (PSA) is widely used as a serum marker for the diagnosis of prostate cancer. To evaluate two anti-free PSA monoclonal antibodies (mAbs) as potential tools in new generations of more relevant PSA assays, we report here their properties towards the recognition of specific forms of free PSA in seminal fluids, LNCaP supernatants, 'non-binding' PSA and sera from cancer patients. PSA from these different origins was immunopurified by the two anti-free PSA mAbs (5D3D11 and 6C8D8) as well as by an anti-total PSA mAb. The composition of the different immunopurified PSA fractions was analysed and their respective enzymatic activities were determined. In seminal fluid, enzymatically active PSA was equally purified with the three mAbs. In LNCaP supernatants and human sera, 5D3D11 immunopurified active PSA mainly, whereas 6C8D8 immunopurified PSA with residual activity. In sera of prostate cancer patients, we identified the presence of a mature inactive PSA form which can be activated into active PSA by use of high saline concentration or capture by an anti-total PSA mAb capable of enhancing PSA activity. According to PSA models built by comparative modelling with the crystal structure of horse prostate kallikrein described previously, we assume that active and activable PSA could correspond to mature intact PSA with open and closed conformations of the kallikrein loop. The specificity of 5D3D11 was restricted to both active and activable PSA, whereas 6C8D8 recognized all free PSA including intact PSA, proforms and internally cleaved PSA.  相似文献   

8.
Prostate-specific antigen (PSA) is a serine protease secreted both by normal prostate glandular epithelial cells and prostate cancer cells. We explored "thiophilic-interaction chromatography" (TIC) to isolate tissue prostate-specific antigen (T-PSA) from fresh human prostate cancer tissue harvested by radical prostatectomy for the purpose to characterize T-PSA for its enzymatic activity and sensitivity to zinc ions. We have shown, for the first time, that T-PSA has strong affinity for the thiophilic gel (T-gel). The average recovery of T-PSA from T-gel is over 87%. The presence of PSA in the column eluate was confirmed by ELISA and SDS/PAGE. Western blot developed with monoclonal antibody to PSA revealed that T-PSA was predominantly in the "free" form having a molecular weight of 33 kDa. Furthermore, T-PSA was found to be enzymatically active. T-PSA was found to be less enzymatically active as compared to seminal plasma PSA. The inhibition of enzymatic activity of both f-PSA and T-PSA over a wide range of concentrations of Zn(2+) ions (10nM to 50 microM) was comparable. In contrast, the enzymatic activity of chymotrypsin, another serine-protease, was affected differently. At higher concentrations of Zn(2+) (10 microM and higher) the enzymatic activity of chymotrypsin was inhibited, whereas, at lower concentrations of Zn(2+) (5 microM and lower), the enzymatic activity was enhanced.  相似文献   

9.
The effects of pH, yeast extract, and neopeptone on the production of extracellular proteinase and M protein by group A streptococci were studied with a type 1 strain capable of producing both M protein and proteinase. The strain DS 2036-66 grew moderately well in a semisynthetic broth. M protein was produced without adding peptides to the medium. When added to a medium with 1% glucose, yeast extract (0.1%) was found to stimulate both growth and proteinase formation. Limiting the glucose to 0.25% prevented a drop in pH below 6.7 and prevented proteinase formation. Although less growth occurred with limited glucose, M protein of high specific activity was produced with an actual increase in acid-extractable M protein during the stationary phase of growth. When the medium was buffered at pH 7.85 with tris(hydroxymethyl)aminomethane buffer, 0.5% neopeptone prevented proteinase formation. This was true even in the presence of 1% glucose and 0.1% yeast extract, which resulted in a fall in pH to about 4.8 by 48 hr. Growth was greater than in Todd Hewitt broth, but the specific activity of M protein was considerably less than that found in the medium with glucose limited to 0.25%. Neopeptone was found to have little direct action on crude streptococcal proteinase. Instead, the evidence suggested that neopeptone somehow prevents proteinase elaboration. Yeast extract, on the other hand, appears to stimulate proteinase elaboration. To prevent proteinase formation, neopeptone must be added early, during the logarithmic phase of growth or at the start. In contrast, when yeast extract was added as late as 24 hr, it resulted in the elaboration of extracellular proteinase and in the decline of M protein. When 38 M nontypable strains from the diagnostic laboratory were tested for proteinase activity under conditions similar to those used in the diagnostic laboratory, only six produced much proteinase.  相似文献   

10.
Accumulation of CO(2) in animal cell cultures can be a significant problem during scale-up and production of recombinant glycoprotein biopharmaceuticals. By examining the cell-surface polysialic acid (PSA) content, we show that elevated CO(2) partial pressure (pCO(2)) can alter protein glycosylation. PSA is a high-molecular-weight polymer attached to several complex N-linked oligosaccharides on the neural cell adhesion molecule (NCAM), so that small changes in either core glycosylation or in polysialylation are amplified and easily measured. Flow-cytometric analysis revealed that PSA levels on Chinese hamster ovary (CHO) cells decrease with increasing pCO(2) in a dose-dependent manner, independent of any change in NCAM content. The results are highly pH-dependent, with a greater decrease in PSA at higher pH. By manipulating medium pH and pCO(2), we showed that decreases in PSA correlate well with bicarbonate concentration ([HCO(3)(-)]). In fact, it was possible to offset a 60% decrease in PSA content at 120 mm Hg pCO(2) by decreasing the pH from 7.3 to 6.9, such that [HCO(3)(-)] was lowered to that of control (38 mm Hg pCO(2)). When the increase in osmolality associated with elevated [HCO(3)(-)] was offset by decreasing the basal medium [NaCl], elevated [HCO(3)(-)] still caused a decrease in PSA, although less extensive than without osmolality control. By increasing [NaCl], we show that hyperosmolality alone decreases PSA content, but to a lesser extent than for the same osmolality increase due to elevated [NaHCO(3)]. In conclusion, we demonstrate the importance of pH and pCO(2) interactions, and show that [HCO(3)(-)] and osmolality can account for the observed changes in PSA content over a wide range of pH and pCO(2) values.  相似文献   

11.
Docetaxel is becoming standard therapy for androgen-independent prostate cancer (AIPC), and investigational agents are being added to docetaxel to assess potential additive effects and synergy. Although one of these agents, calcitriol, has repeatedly demonstrated antiproliferative properties against cancer of the prostate, breast, colon, and lung, the antineoplastic activity of calcitriol requires superphysiologic levels. Unfortunately, chronic exposure to superphysiologic levels of calcitriol causes hypercalcemia and resulting toxicity. Therefore, a host of analogues of calcitriol have been investigated for antineoplastic function, including intermittent dose-intense calcitriol, or DN-101. Because of encouraging results from phase II studies of DN-101 combined with docetaxel, the ASCENT (AIPC Study of Calcitriol Enhancement of Taxotere) phase II trial investigated docetaxel plus DN-101 versus docetaxel plus placebo in 250 men with metastatic AIPC and an abnormal baseline prostate-specific antigen (PSA) level. Although the ASCENT trial did not achieve its primary endpoint for increased PSA response, there was a significant trend in PSA response rate in the DN-101 arm. DN-101 in combination with docetaxel seems to improve overall survival and, interestingly, has a favorable safety profile compared with docetaxel alone. The DN-101/docetaxel combination is currently being studied in a much larger international trial, ASCENT-2.  相似文献   

12.
Three mammalian isoforms of transforming growth factor-beta (TGFbeta) are known, TGFbeta1, 2, and 3, that have non-overlapping functions during development. However, their specific roles in cancers such as prostate cancer are less clear. Here we show that primary cultures of prostatic epithelial cells preferentially produce and activate the latent TGFbeta2 isoform. Paired cultures of normal and malignant prostate cells from prostate cancer patients produced predominantly the TGFbeta2 isoform, with 30- to 70-fold less TGFbeta1. By mono-Q ion exchange chromatography, three major peaks of latent TGFbeta2 activity were observed corresponding to the known small latent TGFbeta2 complex, the known large latent TGFbeta2 complex and a novel eluting peak of latent TGFbeta2. Although prostate cells are known to activate latent TGFbeta, the mechanism for activation is currently unclear. We investigated whether prostate specific antigen (PSA), a serine protease used as a clinical marker for prostate cancer, could play a role in the activation of latent TGFbeta. Unlike plasmin, a known activator of both latent TGFbeta1 and 2, PSA specifically activated the recombinant small latent form of TGFbeta2, but not TGFbeta1. Prostate epithelial cells, therefore, preferentially produce the TGFbeta2 isoform and PSA, a protease produced by the prostate, specifically targets the activation of this TGFbeta isoform. PSA-mediated activation of latent TGFbeta2 may be an important mechanism for autocrine TGFbeta regulation in the prostate and may potentially contribute to the formation of osteoblastic lesions in bone metastatic prostate cancer.  相似文献   

13.
Prostate specific antigen-alpha1-antichymotrypsin was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP-biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSA/ACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.  相似文献   

14.
15.
16.
Prostate-specific antigen (PSA) is a glycoprotein secreted by prostate epithelial cells. PSA is currently used as a marker of prostate carcinoma because high levels of PSA are indicative of a tumor situation. However, PSA tests still suffer from a lack of specificity to distinguish between benign prostate hyperplasia and prostate cancer. To determine whether PSA glycosylation could provide a means of differentiating between PSA from normal and tumor origins, N-glycan characterization of PSA from seminal fluid and prostate cancer cells (LNCaP cell line) by sequencing analysis and mass spectrometry was carried out. Glycans from normal PSA (that correspond to low and high pI PSA fractions) were sialylated biantennary complex structures, half of them being disialylated in the low pI PSA fraction and mostly monosialylated in the high pI PSA. PSA from LNCaP cells was purified to homogeneity, and its glycan analysis showed a significantly different pattern, especially in the outer ends of the biantennary complex structures. In contrast to normal PSA glycans, which were sialylated, LNCaP PSA oligosaccharides were all neutral and contained a higher fucose content. In 10-15% of the structures fucose was linked alpha1-2 to galactose, forming the H2 epitope absent in normal PSA. GalNAc was increased in LNCaP glycans to 65%, whereas in normal PSA it was only present in 25% of the structures. These carbohydrate differences allow a distinction to be made between PSA from normal and tumor origins and suggest a valuable biochemical tool for diagnosis and follow-up purposes.  相似文献   

17.
Prostate-specific antigen (PSA) is an important marker for the diagnosis and management of prostate cancer. Free PSA has been shown to be more extensively cleaved in sera from benign prostatic hyperplasia patients than in sera from prostate cancer patients. Moreover, the presence of enzymatically activatable PSA was characterized previously in sera from patients with prostate cancer by the use of the specific anti-free PSA monoclonal antibody (mAb) 5D3D11. As an attempt to obtain ligands for the specific recognition of different PSA forms including active PSA, phage-displayed linear and cyclic peptide libraries were screened with PSA coated directly into microplate wells or presented by two different anti-total PSA mAbs. Four different phage clones were selected for their ability to recognize PSA and the inserted peptides were produced as synthetic peptides. These peptides were found to capture and to detect specifically free PSA, even in complex biological media such as sera or tumour cell culture supernatants. Alanine scanning of peptide sequences showed the involvement of aromatic and hydrophobic residues in the interaction of the peptides with PSA whereas Spotscan analysis of overlapping peptides covering the PSA sequence identified a peptide binding to the kallikrein loop at residues 82-87, suggesting that the peptides could recognize a non-clipped form of PSA. Moreover, the PSA-specific peptides enhance the enzymatic activity of PSA immobilized into microplate wells whereas the capture of PSA by the peptides inhibited totally its enzymatic activity while the peptide binding to PSA had no effect in solution. These PSA-specific peptides could be potential tools for the recognition of PSA forms more specifically associated to prostate cancer.  相似文献   

18.
Prostate Specific Antigen (PSA) is a biomarker used in the diagnosis of prostate cancer and to monitor therapeutic response. However, its precise role in prostate carcinogenesis and metastasis remains largely unknown. A number of studies arguing in the favor of an active role of PSA in prostate cancer development and progression have implicated this serine protease in the release and activation of growth factors such as insulin-like growth factor 1 (IGF1) through cleavage of insulin like growth factor binding protein 3 and Transforming Growth Factor beta (TGF-beta) through cleavage of Latent TGF-beta. In contrast, other studies suggest that PSA activity might hinder tumor development and progression. In light of these contradictory findings, efficient inhibitors of PSA are needed for exploring its biological role in tumor development and metastasis. Towards the goal of developing potent inhibitors of PSA, we have explored the molecular mechanism of a series of beta-lactam based compounds on binding to PSA using activity assays, matrix assisted laser desorption ionization with a time-of-flight mass spectrometry, and GOLD docking methodology. The mass spectrometry experiments and the activity assays confirmed the time-dependent and covalent nature of beta-lactam binding. To gain insights on the reaction intermediates at the molecular level, we docked beta-lactam inhibitors to a homology modeled PSA using the GOLD docking program in noncovalent and covalent binding modes. The docking studies elucidated the molecular details of the early noncovalent Michaelis complex, the acyl-enzyme covalent complex, and the nature of conformational reorganization required for the long term stability of the covalent complex. Additionally, the molecular basis for the effect of stereochemistry of the lactam ring on the inhibitory potency was elucidated through docking of beta-lactam enantiomers. As a validation of our docking methodology, two novel enantiomers were synthesized and evaluated for their inhibitory potency using fluorogenic substrate based activity assays. Additionally, cis enantiomers of eight beta-lactam compounds reported in a previous study were docked and their GOLD scores and binding modes were analyzed in order to assess the general applicability of our docking results. The close agreement of our docking results with the experimental data validates the mechanistic insights revealed through the docking studies and paves the way for the design and development of potent and specific inhibitors of PSA.  相似文献   

19.
Measurements of the prostate-specific antigen (PSA) levels in blood are widely used as diagnostic, predictive and prognostic marker of prostate disease. The selective detection of molecular forms of PSA can contribute clinically to meaningful enhancements of the conventional PSA-test. As it is plausible that an in-depth search for structural variants of PSA gene products may increase our ability to discriminate distinct patho-biological basis and stages of prostate diseases, we have developed a multi-step protocol comprising gel-based methods followed by mass spectrometric identification.Our current aim was to provide a comprehensive identification of PSA variants occurring in seminal fluid. We provide a proof-of-principle for this multiple step analytical approach to identify multiple PSA variants from complex biological samples that revealed distinct molecular characteristics. In addition, sequence-annotated protein bands in SDS–PAGE gels were compared to those detected by Western blots, and by monitoring the enzymatic activity in zymogram gels, using gelatin as a substrate. The high accuracy annotations were obtained by fast turnaround MALDI-Orbitrap analysis from excised and digested gel bands. Multiple PSA forms were identified utilizing a combination of MASCOT and SEQUEST search engines.  相似文献   

20.
The murine tumor cell DnaJ-like protein 1 or MTJ1/ERdj1 is a membrane J-domain protein enriched in microsomal and nuclear fractions. We previously showed that its lumenal J-domain stimulates the ATPase activity of the molecular chaperone BiP/GRP78 (Chevalier, M., Rhee, H., Elguindi, E. C., and Blond, S. Y. (2000) J. Biol. Chem. 275, 19620-19627). MTJ1/ERdj1 also contains a large carboxyl-terminal cytosolic extension composed of two tryptophan-mediated repeats or SANT domains for which the function(s) is unknown. Here we describe the cloning of the human homologue HTJ1 and its interaction with alpha(1)-antichymotrypsin (ACT), a member of the serine proteinase inhibitor (serpin) family. The interaction was initially identified in a two-hybrid screening and further confirmed in vitro by dot blots, native electrophoresis, and fluorescence studies. The second SANT domain of HTJ1 (SANT2) was found to be sufficient for binding to ACT, both in yeast and in vitro. Single tryptophan-alanine substitutions at two strictly conserved residues significantly (Trp-497) or totally (Trp-520) abolished the interaction with ACT. SANT2 binds to human ACT with an intrinsic affinity equal to 0.5 nm. Preincubation of ACT with nearly stoichiometric concentrations of SANT2 wild-type but not SANT2: W520A results in an apparent loss of ACT inhibitory activity toward chymotrypsin. Kinetic analysis indicates that the formation of the covalent inhibitory complex ACT-chymotrypsin is significantly delayed in the presence of SANT2 with no change on the catalytic efficiency of the enzyme. This work demonstrates for the first time that the SANT2 domain of MTJ1/HTJ1/ERdj1 mediates stable and high affinity protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号