首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin binding to crude plasma membranes derived from human skeletal muscle was characterized. Incubations were performed for 22 h at 4°C. Typical insulin binding characteristics were found, i.e., (a) specificity for insulin, (b) pH sensitivity, (c) dissociation of insulin by the addition of excess insulin and (d) concave Scatchard curves. Half-maximal inhibition of 125I-labeled-insulin binding occurred at 1 · 10?8 M. Affinity constants were 0.76 · 109 and 0.02 · 109 M?1 for the high- and low-affinity receptor (2-site model), respectively, and the corresponding receptor numbers were 89 and 1450 fmol/mg protein, respectively. The procedures employed permit the determination of insulin binding to small quantities of human muscle (approx. 250 mg).  相似文献   

2.
1. The effects of varying the plasma insulin concentration by infusion while maintaining euglycaemia by infusion of glucose on nutrient arterio-venous differences across the hind-limb and mammary gland in lactating and non-lactating sheep were investigated. 2. Insulin infusion increased the glucose arterio-venous difference across the hind-limb; this effect of insulin was decreased by lactation, suggesting that lactation induces insulin resistance in skeletal muscle. 3. Lactation increased but insulin infusion decreased the plasma concentrations of acetate, beta-hydroxybutyrate and non-esterified fatty acids. 4. Insulin infusion decreased the arterio-venous differences of acetate and hydroxybutyrate across the hind-limb; this effect of insulin is probably indirect, resulting from the decrease in plasma concentrations of these metabolites. 5. Infusion of insulin had no effect on the glucose arterio-venous difference across the mammary gland, but did decrease the oxygen arterio-venous difference. 6. The results suggest that lactation results in insulin resistance in skeletal muscle, at least with respect to glucose utilization; this should facilitate the preferential utilization of glucose by the mammary gland.  相似文献   

3.
Insulin binding and tyrosine kinase activity of the insulin receptor have been measured in the liver and muscles of rats fed or submitted to a 72-h-fasting. In both tissues, insulin binding increased in fasting rats. In liver, the ability of insulin to simulate receptor tyrosine kinase activity greatly unpaired during fasting, but remained unchanged in muscle. The change during fasting of the insulin-stimulated tyrosine kinase activity of the insulin receptor is specific to certain tissue.  相似文献   

4.
The phosporyl group of acetylphosphate is transferred to the membranal protein of the sarcoplasmic vesicles during active calcium transport. Although the phosphoprotein formed cannot be distinguished from that obtained in the presence of ATP, the conditions for ATP and acetylphosphate hydrolysis are different from each other.  相似文献   

5.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

6.
Lanthanide (gadolinium, Gd) binding to cardiac and skeletal muscle microsomes was studied, and high- and low-affinity sites were identified. The high-affinity constant was 106 M?1, and there were 131 and 107 nmol/mg bound to this site in dog heart and rabbit skeletal muscle, respectively. Zn2+, Cd2+, Al3+, and Ca2+ (5 mm) inhibited binding, especially of the high-affinity site. Ionophores X537A (10 μm) and A23187 (1–2 μm) increased lanthanide binding and did not cause release. Addition of ATP in low concentration (20–50 μm) increased the binding of Gd without hydrolysis of the ATP. The extra binding induced by ATP was blocked by heating the microsomes and was reversed by [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. High concentrations (10?4–10?3, m) of ATP blocked extra Gd binding by competitive chelation. The Ca2+-activated ATPase was inhibited by Gd and stimulated by X537A. The Gd did not block the ionophore-stimulated increase in Ca2+-ATPase activity. It is postulated that lanthanides bind predominantly to the ionophoric component of the Ca-transport site rather than the hydrolytic site and that ATP may facilitate such binding without being split.  相似文献   

7.
Identification of putative calcium channels in skeletal muscle microsomes   总被引:8,自引:0,他引:8  
D R Ferry  H Glossmann 《FEBS letters》1982,148(2):331-337
Saturable binding sites for the labelled calcium antagonist (+/-)[3H]nimodipine were found in guinea-pig hind limb skeletal muscle homogenates. Binding sites were enriched in a microsomal pellet by differential centrifugation of the homogenate. [3H]Nimodipine binding (Kd = 1.5 +/- 0.03 nM, Bmax = 2.1 +/- 0.25 pmol/protein, at 37 degrees C) copurified (6-fold) in this fraction with [3H]ouabain binding (6.6-fold) and 125I-alpha-bungarotoxin binding (5-fold). d-cis-Diltiazem (but not 1-cis-diltiazem) stimulated (+/-) [3H]nimodipine binding (ED50 1 microM) by increasing the Bmax. Binding sites discriminated between the optical enantiomers of 1.4-dihydropyridine calcium antagonists and the optically pure enantiomers of D-600. The data confirm, with biochemical techniques, the presence of 1,4-dihydropyridine and (+/-) D-600 inhibitable calcium channels in skeletal muscle, previously found with electrophysiological techniques.  相似文献   

8.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

9.
The influence of Ca++, several drugs, and pH on the binding of Ca++ by skeletal muscle microsomes was studied in vitro. A mass-law graphic analysis revealed the presence of three distinct species of Ca++-binding sites in the microsomes, and the binding at only one of these sites was antagonized by local anesthetics and quinidine. These drugs also decreased the maximum Ca++-binding capacity of the microsomes. Caffeine and ouabain exerted no effect on the binding at any of the sites. Procaine was also bound by microsomes, and this binding was antagonized by Ca++, which also decreased the maximum procaine-binding capacity of microsomes. The sites that bind procaine and Ca++ are not identical because the maximum-binding capacities of the interacting sites are distinctly different. The influence of pH on the ability of drugs to antagonize Ca++ binding indicates that the displacing activity increases as the percentage of the drug in the nonionized form increases. All of the data obtained in the above studies are consistent with the interpretation that quinidine and local anesthetics of the procaine type noncompetitively antagonize the binding of Ca++ by microsomes. The pharmacological significance of a noncompetitive interaction may be related to the property of local anesthetics and quinidine to increase contractile tension in skeletal muscle rather than to their ability to stabilize the cell membrane.  相似文献   

10.
Binding of cations by microsomes from rabbit skeletal muscle   总被引:6,自引:0,他引:6  
Fragmented sarcoplasmic reticulum and transverse tubular system, as isolated in the microsomal fraction from rabbit skeletal muscle, bind H+, Na+, K+, Ca++, Mg++, and Zn++. The binding depends on a cation exchange type of interaction between these cations and the chemical components of the membranous systems of the muscle cell. The monovalent and divalent cations exchange quantitatively for each other at the binding sites on an equivalent basis. Scatchard plots of the H+ binding data indicate that the binding groups can be resolved into two major components in terms of their pK values. Component 1 has a pK value of 6.6 and a capacity for H+ binding of 2.2 meq/g N . The second component has a much higher H+ binding capacity (7–8 meq/g N ), but its pK value, 3.4, is non-physiological. The binding of cations other than H+ at a neutral pH occurs at the binding sites making up component 1. The order of affinity of the cations for the microsome binding sites is H+ » Zn++ > Ca++ > Mg++ » Na+ = K+ as reflected by the apparent respective pKM values: 6.6, 5.2, 4.7, 4.2, 1.3, 1.3. Caffeine, which causes contracture and potentiates the twitch of skeletal muscle, does not interfere with the binding of Ca++ by the microsomes at neutral pH.  相似文献   

11.
Lu49888, a photoaffinity analog of verapamil, was used to identify specific binding sites for phenylalkylamines of calcium channels present in rabbit skeletal muscle microsomes. Direct binding equilibrium measurements and displacement curves of Lu49888 by its non-radioactive analog yielded an apparent single class of binding sites with Kd and Bmax values of 16.5 nM and 7.5 pmol/mg respectively. Lu49888 was specifically incorporated into three proteins of apparently 165 kDa, and 33 kDa. Incorporation into the 55-kDa protein was blocked by 10--50-fold higher concentrations of unlabeled phenylalkylamines compared to incorporation into the 165-kDa protein, suggesting that the 165-kDa and 55-kDa proteins contain a high and a low-affinity verapamil-binding site respectively. The photoaffinity-labeled proteins were solubilized by 1% digitonin or 1% Chaps in roughly equal amounts. The 165-kDa protein bound to wheat-germ-agglutinin(WGA)--Sepharose and sedimented in sucrose density gradients with the same constant as the purified dihydropyridine receptor, which has been reconstituted to a functional calcium channel. The 55-kDa membrane protein did not bind to the WGA-Sepharose column and sedimented in sucrose density gradients with a lower s value than the 165-kDa protein. The 165-kDa but not the 55-kDa membrane protein was specifically labeled by azidopine, the photoaffinity analogue of dihydropyridines. The 55-kDa protein of the purified dihydropyridine receptor was not significantly labeled by Lu49888 showing that the 55-kDa protein of the membrane is unrelated to the purified high-affinity dihydropyridine receptor.  相似文献   

12.
13.
It has recently been observed in situ in mice that insulin takes approximately 10 min to be transported 20 microm into the t-tubule networks of skeletal muscle fibers. The mechanisms for this slow transport are unknown. It has been suggested that the biochemical composition of the t-tubular space that may include large molecules acting as gels and increased viscosity in the narrow tubules may explain this slow diffusion. In this article, we construct a mathematical model of insulin transport within the t-tubule network to determine potential mechanisms responsible for this slow insulin transport process. Our model includes insulin diffusion, insulin binding to insulin receptors, t-tubule network tortuosity, interstitial fluid viscosity, hydrodynamic wall effects, and insulin receptor internalization and recycling. The model predicted that depending on fiber type there is a 2-15 min delay in the arrival time of insulin between the sarcolemma and inner t-tubules (located 20 microm from the sarcolemma) after insulin injection. This is consistent with the experimental data. Increased viscosity in the narrow t-tubules and large molecules acting as gels are not the primary mechanisms responsible for the slow insulin diffusion. The primary mechanisms responsible for the slow insulin transport are insulin binding to insulin receptors and network tortuosity.  相似文献   

14.
Studies of the reversible binding of [3H]cortisol by rat gastrocnemius muscle cytoplasm in vitro reveal specific binding in the 27,000 times g supernatant fraction at 0 degrees. The [3H]cortisol-binding molecule had an apparant Kd value of 1.7 times 10-7 M and the number of binding sites was 0.99 pmol per mg of cytosol protein. Only a single class of [3H]cortisol-binding sites could be detected, whose protein nature was suggested by its susceptibility to nagarse. The [3H]cortisol-protein complex sedimented at similar to 4 S in a 5 to 20% sucrose gradient either in the presence or absence of 0.3 M KCl. Binding increased more than 2-fold in adrenalectomized rats and was markedly reduced in the muscle of rats pretreated with cortisol. In contrast to the binding of [3H]dexamethasone and [3H]triamcinolone acetonide to receptor proteins in muscle, no correlation was found between the ability of various steroids to complete wtth [3H]cortisol binding and their glucocorticoid potency: [3H]cortisol binding was inhibited by a 1000-fold higher concentration of unlabeled cortisol and progesterone but not by dexamethasone or triamcinolone acetonide. It is therefore suggested that the [3H]cortisol-binding reaction is not directly involved in the biological effects of all potent glucocorticoids in skeletal muscle. The [3H]cortisol-binding protein in muscle cytosol could not be unequivocally distinguished from rat plasma corticosteroid-binding globulin, because both had similar steroid specificity and temperature stability, were not markedly affected by--SH reagents, and displayed similar sedimentation properties.  相似文献   

15.
Binding of adenosine diphosphate to skeletal muscle myosin was studied using a range of concentrations from 0 to 2 mM. Up to 0.2 mM adenosine diphosphate two equivalent and independent nucleotide binding sites were detected, characterized by the single association constant of 5 x 10(4)M(-1). At greater adenosine diphosphate concentrations a decreasing binding capacity was noticed, bound nucleotide being essentially approximately 0.1 mol/mol at a 1-2mM adenosine diphosphate concentration. We tentatively propose that nucleotides act indirectly on myosin by promoting the perturbation of the solvent, which is supported by the fact that polyphosphates are known powerful kosmotropes.  相似文献   

16.
Franklin Fuchs  Margaret Bayuk 《BBA》1976,440(2):448-455
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites.  相似文献   

17.
Effects of insulin on exchanges of glucose across skeletal muscle and mammary tissue were measured in short-term studies in lactating ewes. Insulin secretion was suppressed by a primed/continuous infusion of somatostatin, then insulin was administered by continuous intravenous infusion of doses that were increased, in a step-wise manner, from 0 to 2 U h-1. Plasma glucose was maintained essentially constant by frequent monitoring and intravenous administration of exogenous glucose. Somatostatin suppressed but did not completely inhibit insulin secretion as shown by maintenance of plasma concentration of C-peptide. As plasma insulin was increased, while arterial glucose was maintained stable, uptake of glucose by skeletal muscle increased and glucose uptake by the mammary gland decreased. These observations confirm the role of insulin in regulating glucose uptake by skeletal muscle and raise the possibility that insulin also regulates glucose uptake by the mammary gland.  相似文献   

18.
Insulin binding, insulin degradation, and 2-deoxyglucose uptake were examined at 18 and 37 degrees C in soleus and extensor digitorum longus muscles of mice. Insulin binding and degradation were greater in the soleus than in the extensor digitorum longus at both temperatures (p less than 0.05). At 37 degrees C, binding was decreased in both muscles while percentage degradation was increased in comparison with 18 degrees C (p less than 0.05). Dose--response curves (percentage of binding at 4 nM of insulin) remained the same for both muscles at the two temperatures. Basal (no insulin) 2-deoxyglucose uptake was increased at 37 degrees C in the extensor digitorum longus but not the soleus. Insulin responsiveness in terms of the amount of 2-deoxyglucose taken up per femtomole of insulin bound was almost identical for the two muscles at 18 degrees C, whereas at 37 degrees C it was increased more in the soleus than in the extensor digitorum longus. The results indicate that in the presence of physiological concentrations of insulin (0.2-4 nM), insulin binding trends are minimally affected by increased temperature. In contrast, the ability of insulin to stimulate 2-deoxyglucose uptake varies between the two temperatures, and at the higher temperature between fast- and slow-twitch muscle.  相似文献   

19.
A study was made of 3H-19-nortestosterone binding by isolated nuclei and 0.4 M KCl nuclear extract of the rat skeletal muscle. Binding specificity was ascertained by incubation in the presence of various unlabeled steroids. The Kd values were measured for nuclei and 0.4 M KCl nuclear extract (11.6 +/- 2.5 nM and 9.9 +/- 1.6 nM, respectively). The amount of binding sites was 24.1 +/- 1.7 fmol/mg DNA or 13.7 +/- 1.0 fmol/g tissue. Enzymatic treatment with pronase and DNase shows that nuclear androgen receptors are proteins. DNA was noted to have a stabilizing effect. DNase treatment of nuclei during extraction with 0.4 M KCl was shown to significantly increase the amount of specifically bound radioactivity in the extract.  相似文献   

20.
Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号