首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently described an apparatus for protein purification based on a segmented Immobiline gel, having one or more liquid interlayers in between. The principle is entirely new, as it is based on keeping the protein of interest isoelectric, in a flow chamber, and focusing the impurities in an Immobiline gel. For this, a hydraulic flow is coupled orthogonally to an electric flow, sweeping away the non-isoelectric impurities from the recycling chamber. We now demonstrate that the present apparatus can be efficiently used for protein desalting. Hemoglobin A samples, containing 50 mM NaCl or 50 mM ammonium acetate, could be efficiently desalted in 2 h of recycling, after which the total salt content had decreased to less than 0.005 mM (a salt decrement of more than 10,000 fold the initial input). However, with polyprotic buffers (sulphate, citrate, phosphate, oligoamines) the desalting process was much slower, typically of the order of 20 h, possibly due to interaction of these species with the surrounding Immobiline matrix. In this last case, outside pH control (e.g. with a pH-stat) is necessary during protein purification, as, due to the faster removal of the monovalent counterion, the solution in the recycling chamber can become rather acidic or alkaline. It is demonstrated that the 2 extremities of the Immobiline segments facing the sample recycling chamber act indeed as isoelectric membranes, having a good buffering capacity, preventing the protein macroion from leaving the chamber by continuously titrating it to its isoelectric point.  相似文献   

2.
A modification of the previously described apparatus (Faupel et al. (1987) J. Biochem. Biophys. Methods 15, 147-162), for recycling isoelectric focusing in a segmented immobilized pH gradient, is here reported. The most important improvements are: (1) a horizontal, vs. the previously vertical assembly; (2) a reduction of the thickness of the central flow chamber to 6 mm, vs. the previous 3 cm length and (3) the introduction, at both gel extremities of each Immobiline segment, of polypropylene filters, thus efficiently blocking the gel in situ. The advantages are: (i) the spontaneous removal of air bubbles, which in the vertical apparatus tend to accumulate in the ceiling of the flow chamber and to obstruct the flow of electric current; (ii) a more efficient hydraulic flow with a reduced chance of heating the liquid stream in the flow chamber, due to its reduced length along the separation path and (iii) a reduced risk of gel detachment from the tube walls, due to osmotic swelling caused by focused protein zones in the gel phase and by the fixed Immobiline charges in the polyacrylamide matrix.  相似文献   

3.
An effective preparative isoelectric focusing method has been developed using the LKB Immobiline system in a vertical slab gel apparatus. Advantages of this procedure are ease of sample application, excellent resolution, and the direct visualization of focused bands. Narrow pH gradients have been used to separate apolipoprotein E3 isoforms (pH gradient 4.9-5.9) and to resolve the apolipoprotein C mixture (pH gradient 4.0-5.0). Recoveries ranged from 40 to 70%. The method should be valuable for protein and isoform purification.  相似文献   

4.
A new method for preparative protein purification is described, based on the use of Immobiline matrices. After electrofocusing, the protein zone of interest is recovered by electrophoretic transfer to a hydroxyapatite gel, from which it is eluted with 0.2 M phosphate buffer, pH 6.8, with yields for the proteins studied in the range 76-98%. For six different proteins, the focusing step gives a common upper limit of approximately 45 mg protein/ml gel as mean concentration in a focused protein zone. It is demonstrated that in practical preparative work, components with a pI difference of 0.007 pH units can be completely resolved, and that on a 5-mm-thick gel of dimensions 240 X 110 mm, samples containing as much as 400 mg of the major protein component can be applied. Focusing of large amounts of a salt-containing sample is demonstrated with the aid of human serum. A theoretical expression is given relating the concentration distribution and maximum protein concentration within a focused zone to the applied voltage, the pH slope used and the zone width. Based on this expression and the finding of an upper concentration limit for a protein we shown how to optimize the parameters in preparative work with immobilized pH gradients in relation to the separation power needed. Finally, it is shown that, in comparison with conventional preparative electrofocusing in polyacrylamide gels, immobilized pH gradients allow a ten-fold increase in load, whilst still giving a resolution comparable to that of analytical isoelectric focusing.  相似文献   

5.
The preparative aspects of isoelectric focusing (IEF) in immobilized pH gradients (IPG) have been investigated as a function of the following parameters: environmental ionic strength (I), gel geometry and shape of pH gradient. As model proteins, hemoglobin (Hb) A and a minor, glycosylated component (HbA1c), with a delta pI = 0.04 pH units, have been selected. The load capacity increases almost linearly, as a function of progressively higher I values, from 0.5 X up to 2 X molarity of buffering Immobiline (pK 7.0) to abruptly reach a plateau at 3 X concentration of buffering ion. The load capacity also increases almost linearly as a function of gel thickness from 1 to 5 mm, without apparently levelling off. When decreasing the pH interval from 1 pH unit (pH 6.8-7.8) to 1/2 pH unit (pH 7.05-7.55) the amount of protein loaded in the HbA zone could be increased by 40%. In 5 mm thick gels, at 2 X pK 7.0 Immobiline concentration, over a 1/2 pH unit span, up to 350 mg HbA (in a 12.5 X 11 cm gel) could be loaded in a single zone, the load limit of the system being around 45 mg protein/ml gel volume.  相似文献   

6.
The evolution of isoelectric focusing is traced back over the years, from a somewhat shaky origin to present-day immobilized pH gradients. Four generations of methodology are classified and discussed: (A) Kolin's approach, consisting of a two-step technique, generation of a pH gradient by diffusion followed by a rapid electrokinetic protein separation; (B) Svensson-Rilbe's approach, consisting of creating a pH gradient in an electric field by utilizing as buffers a multitude of carrier ampholytes, i.e. of amphoteric species possessing good buffering capacity and conductivity at their pI; (C) immobilized pH gradients, by which non-amphoteric buffers and titrants (acrylamido weak acids and bases), titrated around their pK values, are grafted (insolubilized) onto a polyacrylamide gel matrix and (D) mixed-bed carrier ampholyte-Immobiline gel, by which a soluble, carrier ampholyte generated pH gradient coexists in the same matrix with an insoluble, Immobiline generated, pH gradient.  相似文献   

7.
Amphoteric, isoelectric agarose membranes, as devised by Martin and Hampson [Martin, A.J.P. and Hampson, F. (1978) J. Chromatogr. 159, 101-110], are found unsuitable for blocking electroendosmosis in multi-compartment electrolysers during preparative isoelectric focusing, due to the poor and highly unpredictable incorporation of carboxyls and amino groups on the polysaccharide moiety. New, polyacrylamide-based membranes are described, containing as buffers and titrants the Immobiline chemicals used to produce immobilized pH gradients. These new membranes are supported on both faces by a non-woven polypropylene cloth, a material exhibiting minimal adsorption properties for proteins. Due to the extensively developed Immobiline technology, membranes with highly predictable isoelectric points, well-defined buffering capacity and conductivity can be synthesized at any pH value along the pH 3-10 scale. They are effective in blocking electroendosmosis even when the delta pH on either side of the membrane is as high as 1.5 pH unit.  相似文献   

8.
Following electrophoresis or isoelectric focusing in gels of polyacrylamide the protein band of interest is cut out and placed above a sucrose gradient column, containing carrier ampholytes (Pharmalyte). By electrophoresis, isoelectric focusing or displacement electrophoresis the proteins migrate out of the gel slice and into the isoelectric focusing column for concentration and further purification. From this column, the proteins can be withdrawn and their isoelectric points determined. Even after staining with Coomassie Brilliant Blue at least some proteins can be recovered by this technique and used for further analyses, for instance amino acid determinations. The focusing in a pH gradient by carrier ampholytes can be replaced by an electrophoresis in a conductivity gradient column. However, in comparison with isoelectric focusing, this concentration technique has the drawback of not permitting further purification of the eluted protein.  相似文献   

9.
A new acrylamido buffer has been synthesized, for use in isoelectric focusing in immobilized pH gradients. This compound (2-acrylamido glycolic acid) has a pK = 3.1 (at 25 degrees C, 20 mM concentration during titration) and is used, by titration with the pK 9.3 Immobiline, to produce a linear pH gradient in the pH 2.5-3.5 interval. Pepsin (from pig stomach) focused in this acidic pH gradient is resolved into four components, two major (with pI values 2.76 and 2.78) and two minor (having pI values 2.89 and 2.90). This is the first time that such strongly acidic proteins could be focused in an immobilized pH gradient. Even in conventional isoelectric focusing in amphoteric buffers it has been impossible to focus reproducibly very-low-pI macromolecules.  相似文献   

10.
With the synthesis of a new, strongly basic Immobiline (pK 10.3 at 10 degrees C) it has been possible to formulate a new pH 10-11 recipe for focusing very alkaline proteins, not amenable to fractionation with conventional isoelectric focusing in carrier ampholyte buffers. In this formulation, water is added as an acidic Immobiline having pK = 14 and a unit molar concentration (or with a pK = 15.74 and standard 55.56 molarity) since around pH 11 its buffering power becomes significant. The gel contains a 'conductivity quencher', i.e. a density gradient incorporated in the matrix, with the dense region located on the cathodic side (pH 11) for (a) smoothing the voltage gradient on the separation cell and (b) reducing the anodic electrosmotic flow due to the net positive charge acquired by the matrix at pH 11 (1 mM excess protonated amino groups to act as counterions to the 1 mm OH- groups in the bulk water solution generated by the local value of pH 11). Excellent focusing is obtained for such alkaline proteins as lysozyme (pI 10.55), So-6 (a leaf protein, pI 10.49), cytochrome c (pI 10.45) and ribonuclease (pI 10.12).  相似文献   

11.
A method is described for keeping a constant salt background during protein purification in a segmented immobilized pH gradient. It is based on an external hydraulic flow replenishing the salt loss due to combined electric and diffusional mass transport (similar to the concept of Ribes' steady-state rheoelectrolysis). Such a minimum of ionic strength might be needed for proteins which tend to precipitate and aggregate at or in vicinity of the isoelectric point. However, it is found that any salt level in the sample feed (already at 1 mM concentration) deteriorates transport of non-isoelectric proteins, because of the much larger current fraction carried by the ions themselves as opposed to proteins. In addition, high salt levels in the sample reservoir might form cathodic and anodic ion boundaries, alkaline and acidic, respectively, which might hamper protein migration and even induce denaturation. Thus, when high salt backgrounds are needed in the sample feed, external pH control should be exerted, e.g. with a pH-stat. Three parameters influence protein transport in the segmented IPG chamber: (a) cross-sectional area of the Immobiline membranes; (b) delta pI between the isoelectric protein and the contaminants and (c) salt molarity in the sample reservoir. The first 2 show a positive, the last a negative correlation.  相似文献   

12.
We describe and compare the use of isoelectric focusing (IEF) in a granulated Sephadex matrix and in polyacrylamide immobilized pH gradients to separate an aromatase inhibitor (follicle regulatory protein: FRP) in preparative amounts from porcine follicular fluid (PFF). The starting material for IEF was derived from pFF after passage through agarose immobilized textile dye Orange A (0.5 KC1 eluent). Before IEF, some Orange A bound (OAB) material was further purified on a FPLC employing a Mono-Q anion exchange column. Previous use of chromatofocusing indicated that aromatase inhibitory activity is largely concentrated in OAB fractions with a pI in the ranges of pH approximately 4.5 and approximately 6.5. The current study revises these findings to provide a more precise measure of the isoelectric points in question to pH 4.73 +/- 0.05 and pH 6.41 +/- 0.06. The use of Sephadex was limited by gradient instability and the selection of pH ranges available. IEF using immobilized pH gradients had several advantages over Sephadex: 1) broader selection of gradients from 0.1 to 7.0 pH units; greater resolving power, and enhanced stability. The principal disadvantage of the immobiline system was the recovery of focused material from the gel matrix. The use of isoelectric focusing with immobilized pH gradients on a preparative scale to purify FRP from OAB resulted in a greater than 50% recovery with a substantial increase in specific activity (from ID50 approximately 300 micrograms/ml to 20 ng/ml).  相似文献   

13.
The Gradiflow trade mark, a preparative electrophoresis instrument capable of separating proteins on the basis of their size or charge, was used to separate whole cell lysates, prepared from bakers yeast (Saccharomyces cerevisiae) and Chinese snow pea seeds (Pisum sativum macrocarpon), into protein fractions of different pH regions. Both broad and narrow range (with a difference of approximately 1 pH unit) pH fractions were obtained. Analysis of the protein fractions by isoelectric focusing gels and two-dimensional (2-D) polyacrylamide gel electrophoresis indicated minimal overlap between the pH fractions. Further, when the prefractionated acidic samples were analyzed on pH 4-7 immobilized pH gradient 2-D gels, improved resolution of the proteins within the chosen pH region was achieved compared to the unfractionated samples. This study demonstrates that the Gradiflow could be used as a preparative electrophoresis tool for the isolation of proteins into distinct pH fractions.  相似文献   

14.
A method for preparative isoelectric focusing of 0.1-10 g amounts of proteins is described. For anticonvective stabilization of the pH gradient, layers of granulated gels (E.G. Sephadex or Bio-Gel) of variable length, width and thickness were used either on glass plates or in troughs. Load capacity, defined as the amount of protein per ml gel suspension, was determined to be 5-10 mg per ml for total protein, irrespective of the pH range of the carrier ampholytes. For single proteins load capacities of 0.25-1 mg per ml were found for pH 3-10 carrier ampholytes, and 2-4 mg per ml for narrow pH range ampholytes. Experiments on a quartz plate followed by densitometric evaluation in situ at 280 nm have demonstrated that it is possible to proceed from analytical thin-layer isoelectric focusing to preparative separations without loss of resolution, just by changing the dimension of the gel layer and increasing the protein load. Improved resolution which facilitates isolation of isoelectrically homegenious components could be achieved on a 40 cm long separation distance. The geometry of a layer is favourable to heat dissipation and this permits the use of high voltage gradients. Recovery of the focused proteins is high an elution simple. The efficiency of the method is illustrated by examples showing separations of single proteins and protein mixtures.  相似文献   

15.
A novel free-flow protein purification technique based on isoelectric electrophoresis is presented, where the proteins are purified in solution without the need of carrier ampholytes. The gist of the method is to flow protein solutions under an immobilised pH gradient gel (IPG) through which an electric field is applied perpendicular to the direction of the flow. Due to the buffering capacity of the IPG gel, proteins with an isoelectric point (pI) close to pH of the gel in contact with the flow chamber stay in solution because they are neutral and therefore not extracted by the electric field. Other proteins will be charged when approaching the IPG gel and are extracted into the gel by the electric field. Both a demonstration experiment with pI markers and a simulation of the electric field distribution are presented to highlight the principle of the system. In addition, an isoelectric fractionation of an Escherichia coli extract is shown to illustrate the possible applications.  相似文献   

16.
A new technique for generating pH gradients in isoelectric focusing is described, based on the principle that the buffering groups are covalently linked to the matrix used as anticonvective medium. For the generation of this type of pH gradient in polyacrylamide gels, a set of buffering monomers, called Immobiline (in analogy with Ampholine), is used. The pH gradient gels are cast in the same way as pore gradient gels, but instead of varying the acrylamide content, the light and heavy solutions are adjusted to different pH values with the aid of the Immobiline buffers. Available Immobiline species make it possible to generate any narrow linear pH gradient between pH 3 and 10. The behaviour of these types of gradients in isoelectric focusing is described.Immobilized pH gradients show a number of advantages compared with carrier ampholyte generated pH gradients. The most important are: (1) the cathodic drift is completely abolished; (2) they give higher resolution and higher loading capacitu; (3) they have uniform conductivity and buffering capacity; (4) they represent a milieu of known and controlled ionic strenght.  相似文献   

17.
Modifications of the LKB Immobiline isoelectric focusing (IEF) technique are described for use under conditions that solubilize and denature most proteins (8 M urea and 2% Nonidet-P40). This procedure permits pH gradients that are four- to fivefold shallower than previously available with conventional ampholine-IEF procedures. It can also be used as a first dimension in two-dimensional gel electrophoresis. The advantage of the stable ultranarrow pH gradient is demonstrated by directly comparing the resolution of vertebrate brain tubulins using (i) denaturing conventional ampholine-IEF and (ii) denaturing Immobiline-IEF. Analysis of tubulin on the Immobiline-IEF gel increases the separation distance between the individual tubulins and distinguishes differences among tubulin samples that could not be resolved by conventional ampholine isoelectric focusing.  相似文献   

18.
The efficient use of preparative protein purification in a multicompartment electrolyzer with Immobiline membranes depends on the knowledge of membrane characteristics. For that purpose, an experimental investigation of the effects of ionic charges on the membrane characteristics has been carried out through the measurements of membrane swelling and conductance. We also investigated the effects on the electrolyzer behaviour of operating parameters such as the Immobiline concentration and the presence of ion-exchange membranes. Data show that polyacrylamide gel degree of swelling is strongly dependent upon the pH and the ionic strength of the bathing solution as well as on the type and molarity of charges incorporated in the gel. The conductance of supported Immobiline gels in contact with uni-univalent chloride solutions has been measured by means of a mercury cell. The membrane conductance is also influenced by the ionic strength of the equilibrium solution and the presence of weak ionizable groups in the gel matrix. This study has demonstrated the close link between electrochemical and electromechanical properties of Immobiline membranes.  相似文献   

19.
Preparative electrophoresis methods (including isoelectric focusing in immobilized pH gradients) in gel phases are characterized by low loadings barely a few mg protein per ml matrix), low recoveries (rarely exceeding 70%), and heavy contamination from neurotoxic gel materials (the unreacted gel monomers and ungrafted oligomers). These drawbacks can be minimized by a version of isoelectric focusing in which the need for protein of interest to pass the gel is eliminated: only the contaminants traverse the gel. This is achieved by circulating a liquid sample between two gels held at controlled pHs. The method can provide: (1) high rate of sample processing (up to 1 g h−1); (2) high purification (in general to charge homogeneity); and (3) high recoveries (>95%). A large-scale membrane apparatus has been built, with a cross- sectional diameter of 9 cm. Large Pt electrode disks provide even current flow. In this electrolyser, 10 g of Eglin C (produced by recombinant DNA technology) have been purified to homogeneity in around 10 h from 1 l of a partially enriched preparation.  相似文献   

20.
A rapid and reproducible method for the pH measurement in the effluent from density gradient electrofocusing is described. By this procedure, after preparative isoelectric focusing, the detection of protein zones and pH measurement can be accomplished simultaneously, by serially coupling a uv flow cell with a pH flow cell. This last one is connected to the recorder by a control unit, which allows the simultaneous printing of pH and uv absorption on the same chart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号