共查询到20条相似文献,搜索用时 0 毫秒
1.
Photosynthetically active chloroplasts retaining high rates of fatty acid synthesis from [1- 14C]acetate were purified from leaves of both 16:3 ( Solanum nodiflorum, Chenopodium album) and 18:3 plants ( Amaranthus lividus, Pisum sativum). A comparison of lipids into which newly synthesized fatty acids were incorporated revealed that, in 18:3 chloroplasts, enzymic activities catalyzing the conversion of phosphatidate to diacylglycerol and of diacylglycerol to monogalactosyl diacylglycerol (MGD) were significantly less active than in 16:3 chloroplasts. In contrast, labeling rates of MGD from UDP-[ 14C]gal were similar for both types of chloroplasts. The composition and positional distribution of labeled fatty acids within the glycerides synthesized by isolated 16:3 and 18:3 chloroplasts were similar and in each case only a C18/C16 diacylglycerol backbone was synthesized. In nodiflorum chloroplasts, C18:1/C16:0 MGD assembled de novo was completely desaturated to the C18:3/C16:3 stage. Whereas newly synthesized C18/C18 MGD could not be detected in any of these chloroplasts if incubated with [14C]acetate after isolation, chloroplasts isolated from acetate-labeled leaves contained MGD with labeled C18 fatty acids at both sn-1 and sn-2 positions. Taken together, these results provide further evidence on an organellar level for the operation of pro- and eucaryotic pathways in the biosynthesis of MGD in different groups of plants. 相似文献
2.
The oxidation of [1- 14C]linoleate in isolated microsomes from pea leaves was found to be stimulated by NADPH addition. The formation of one of the main metabolites, 12-hydroxy-9( Z)-dodecenoic acid is particularly NADPH-dependent. The predominant products in the absence of NADPH were hydroperoxides and in the presence of NADPH, 12-hydroxy-9( Z)-dodecenoic acid. Exogenous [1- 14C]-13-hydroperoxy-9( Z), 11( E)-octadecadieoic acid and [1- 14C]-12-oxo-9( Z)-dodecenoic acidwere the efficient precursors of 12-hydroxy9( Z)-dodecenoic acid. It was concluded that 12-hydroxy-9( Z)-dodecenoic acid is formed by NADPH-dependent enzymatic reduction of 12oxo-9( Z)-dodecenoic acid. The observed inhibition of linoleate oxidation in isolated microsomes by CO and metryapone suggests the involvement of cytochrome P-450 in the reaction. The relative contribution of lipoxygenase and monooxygenase activity to linoleate oxidation in microsomes is discussed. 相似文献
3.
Levulinic acid (LA), a competitive inhibitor of δ-aminolevulinic acid (ALA) dehydratase (EC 4.2.1.24), has been used extensively in the study of ALA formation during greening. When [1- 14C]LA is administered to etiolated barley ( Hordeum vulgare L. var. Larker) shoots in darkness, 14CO 2 is evolved. This process is accelerated when such tissues are incubated with 2 millimolar ALA or placed under continuous illumination. Label from the C-1 of LA becomes incorporated into organic acids, amino acids, sugars, lipids, and proteins during a 4-hour incubation in darkness or in the light. This metabolism is discussed in relation to the use of LA as a tool in the study of chlorophyll synthesis in higher plants. 相似文献
4.
Isolation and incubation conditions were established for Petunia hybrida chloroplasts capable of performing in vitro protein and RNA synthesis. Under these conditions, chloroplasts from leaves as well as from the non-photoautotrophic mutant green cell culture AK-2401 are able to incorporate labeled amino acids into polypeptides. Intact chloroplasts can use light as an energy source; photosynthetically-inactive chloroplasts require the addition for ATP for this protein synthesis. Sodium dodecylsulphate polyacrylamide slab gel electrophoresis shows that in isolated leaf chloroplasts at least twenty-five radioactive polypeptide species are synthesized. The three major products synthesized have molecular weights of 52,000, 32,000 and 17,000. Coomassie brilliant-bluestained polypeptide patterns from plastids isolated from the mutant green cell culture AK-2401 differ considerably from those obtained from leaf chloroplasts. The pattern of radioactive polypeptides synthesized in these isolated cell culture plastids also shows differences. These results indicate that the difference in developmental stage observed between plastids from the cell culture AK-2401 and leaves is reflected in an altered expression of the chloroplast DNA.Abbreviations CAP
D-threo-chloramphenicol
- 2,4-D
2,4-dichlorophenoxyacetic acid
- DCMU
3-(3,4-dichlorophenyl)-1,1-dimethylurea
- RuBPCase
ribulose-1,5-bisphosphate carboxylase
- SDS
sodium dodecylsulphate 相似文献
5.
1. Isolated spinach (Spinacia oleracea) chloroplasts were incapable of accumulating polar lipids when incubated with [1-14C]acetate in a cofactor-free medium. When CoA, ATP and glycerol 3-phosphate were added to incubation media, the accumulated products were non-esterified fatty acids, acyl-CoA and 1,2-diacylglycerol, all intermediates of lipid metabolism. 2. Chloroplast acyl-CoA was used to synthesize phosphatidylcholine only when a microsomal fraction was added back to the incubation medium. 3. The 1,2-diacylglycerol synthesized by isolated chloroplasts was converted almost quantitatively into diacylgalactosylglycerol when exogenous UDP-galactose was available. 4. Stereospecific analyses of the isolated lipids suggested that the diacylglycerol synthesized by isolated chloroplasts may be an important precursor for the synthesis in vivo of diacylgalactosylglycerol and phosphatidylglycerol but was unlikely to be a precursor of phosphatidylcholine. 5. A scheme for plant-lipid biosynthesis is presented that integrates the functions of chloroplasts, the cytoplasm and the endoplasmic reticulum. 相似文献
7.
Intact chloroplasts (about 70% Class I chloroplasts) isolatedfrom spinach leaves incorporated 150 nmoles of [1- 14C] acetateinto fatty acids per mg chlorophyll in 1 hr at pH 8.3, 25°Cand 25,000 lux. On electron and phase-contrast microscopiescombined with hypotonic treatment of chloroplasts, this syntheticactivity was shown to be proportional to the percentage of ClassI chloroplasts in the preparation. Light was necessary for thesynthesis, the activity in the complete reaction mixture inthe dark being only 2% of that in the light. The synthetic activityincreased with increasing intensities of light to reach saturationat 6,000 lux. CoA and ATP were most effective as cofactors,HCO 3, HPO 42, Mg 2$ and Mn 2$ were less effective.ATP could be replaced by ADP in the presence of Pi, suggestingpossible supply of ATP by photophosphorylation. Omission ofthe NADPH-generation system and NADH did not affect the synthesis,indicating sufficient provision of endogenous NADPH and NADHin intact chloroplasts under light. Addition of DTE did notcause recovery of the synthetic activity of intact chloroplastsin the dark.
1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; ) 相似文献
8.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts. 相似文献
9.
Intact chloroplasts isolated from leaves of eight species of 16:3 and 18:3 plants and chromoplasts isolated from Narcissus pseudonarcissus L. flowers synthesize galactose-labeled mono-, di-, and trigalactosyldiacylglycerol (MGDG, DGDG, and TGDG) when incubated with UDP-[6- 3H]galactose. In all plastids, galactolipid synthesis, and especially synthesis of DGDG and TGDG, is reduced by treatment of the organelles with the nonpenetrating protease thermolysin. Envelope membranes isolated from thermolysin-treated chloroplasts of Spinacia oleracea L. (16:3 plant) and Pisum sativum L. (18:3 plant) or membranes isolated from thermolysin-treated chromoplasts are strongly reduced in galactolipid:galactolipid galactosyltransferase activity, but not with regard to UDP-Gal:diacylglycerol galactosyltransferase. For the intact plastids, this indicates that thermolysin treatment specifically blocks DGDG (and TGDG) synthesis, whereas MGDG synthesis is not affected. Neither in chloroplast nor in chromoplast membranes is DGDG synthesis stimulated by UDP-Gal. DGDG synthesis in S. oleracea chloroplasts is not stimulated by nucleoside 5′-diphospho digalactosides. Therefore, galactolipid:galactolipid galactosyltransferase is so far the only detectable enzyme synthesizing DGDG. These results conclusively suggest that the latter enzyme is located in the outer envelope membrane of different types of plastids and has a general function in DGDG synthesis, both in 16:3 and 18:3 plants. 相似文献
10.
BackgroundAcetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. MethodsHyperpolarized [1- 13C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The 13C magnetic resonance signals of [1- 13C]acetate and [1- 13C]acetylcarnitine were recorded in vivo for 1 min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3 s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. ResultsAlthough separated by two biochemical transformations, a kinetic analysis of the 13C label flow from [1- 13C]acetate to [1- 13C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM = 0.35 ± 0.13 mM and Vmax = 0.199 ± 0.031 μmol/g/min. ConclusionsThe conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. General significanceThis study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue. 相似文献
11.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate. 相似文献
12.
The capacity of intact chloroplasts to synthesize long chain fatty acids from acetate depends on the stroma pH in Spinacia oleracea, U. S. hybrid 424. The pH optimum is close to 8.5. Lowering of the stroma pH leads to a reduction of acetate incorporation but does not suffice to eliminate fatty acid synthesis completely. Chain elongation from palmitic to oleic acid shows the same pH dependence. Fatty acid synthesis is activated in the dark upon the simultaneous addition of dihydroxyacetone phosphate and orthophosphate supplying ATP and oxaloacetate for reoxidation of NADPH in the stroma. Under these conditions both dark fatty acid synthesis and synthesis of oleate from palmitate show the same pH dependence as in the light. Dark fatty acid synthesis is further stimulated by increasing the stromal Mg 2+ concentration with the ionophore A 23187. In contrast to CO 2 fixation, dark fatty acid synthesis is considerably reduced by dithiothreitol (DTT). This observation may be due to an acetyl-CoA deficiency, caused by a nonenzymic acylation of DTT, and a competition for ATP between DTT-activated CO 2 fixation and fatty acid synthesis. Because d,l-glyceraldehyde as inhibitor of CO 2 fixation compensates the DTT effect on dark fatty acid synthesis, reducing equivalents may be involved in the light dependence of acetate activation. 相似文献
13.
The metabolic fate of l-[4- 14C]ascorbic acid has been examined in the grape ( Vitis labrusca L.) and lemon geranium ( Pelargonium crispum L. L'Hér. cv. Prince Rupert) under conditions comparable to data from l-[1- 14C]ascorbic acid and l-[6- 14C]ascorbic acid experiments. In detached grape leaves and immature berries, l-[4- 14C]ascorbic acid and l-[1- 14C]ascorbic acid were equivalent precursors to carboxyl labeled (+)-tartaric acid. In geranium apices, l-[4- 14C]ascorbic acid yielded internal labeled (+)-tartaric acid while l-[6- 14C]ascorbic acid gave an equivalent conversion to carboxyl labeled (+)-tartaric acid. These findings clearly show that two distinct processes for the synthesis of (+)-tartaric acid from l-ascorbic acid exist in plants identified as (+)-tartaric acid accumulators. In grape leaves and immature berries, (+)-tartaric acid synthesis proceeds via preservation of a four-carbon fragment derived from carbons 1 through 4 of l-ascorbic acid while carbons 3 through 6 yield (+)-tartaric acid in geranium apices. 相似文献
14.
Biosynthesis of the aliphatic components of suberin was studied in suberizing potato ( Solanum tuberosum) slices with [1- 14C]oleic acid and [1- 14C]acetate as precursors. In 4-day aged tissue, [1- 14C]oleic acid was incorporated into an insoluble residue, which, upon hydrogenolysis (LiA1H 4), released the label into chloroform-soluble products. Radio thin layer and gas chromatographic analyses of these products showed that 14C was contained exclusively in octadecenol and octadecene-1, 18-diol. OsO 4 treatment and periodate cleavage of the resulting tetraol showed that the labeled diol was octadec-9-ene-1, 18-diol, the product expected from the two major components of suberin, namely 18-hydroxyoleic acid and the corresponding dicarboxylic acid. Aged potato slices also incorporated [1- 14C]acetate into an insoluble material. Hydrogenolysis followed by radio chromatographic analyses of the products showed that 14C was contained in alkanols and alkane-α,ω-diols. In the former fraction, a substantial proportion of the label was contained in aliphatic chains longer than C 20, which are known to be common constituents of suberin. In the labeled diol fraction, the major component was octadec-9-ene-1,18-diol, with smaller quantities of saturated C 16, C 18, C 20, C 22, and C 24-α,ω-diols. Soluble lipids derived from [1- 14C]acetate in the aged tissue also contained labeled very long acids from C 20 to C 28, as well as C 22 and C 24 alcohols, but no labeled ω-hydroxy acids or dicarboxylic acids were detected. Label was also found in n-alkanes isolated from the soluble lipids, and the distribution of label among them was consistent with the composition of n-alkanes found in the wound periderm of this tissue; C 21 and C 23 were the major components with lesser amounts of C 19 and C 25. The amount of 14C incorporated into these bifunctional monomers in 0-, 2-, 4-, 6-, and 8-day aged tissue were 0, 1.5, 2.5, 0.8, and 0.3% of the applied [1- 14C]oleic acid, respectively. Incorporation of [1- 14C]acetate into the insoluble residue was low up to the 3rd day of aging, rapid during the next 4 days of aging, and subsequently the rate decreased. These changes in the rates of incorporation of exogenous oleic acid and acetate reflected the development of diffusion resistance of the tissue surface to water vapor. As the tissue aged, increasing amounts of the [1- 14C]acetate were incorporated into longer aliphatic chains of the residue and the soluble lipids, but no changes in the distribution of radioactivity among the α-ω-diols were obvious. The above results demonstrated that aging potato slices constitute a convenient system with which to study the biochemistry of suberization. 相似文献
15.
The photoreduction of protochlorophyllide was studied in leaves and isolated chloroplasts of barley. Leaves of plants which had been preilluminated for varying lengths of time were incubated with [ 14C]-δ- aminolevulinic acid for 2 h in the dark. The subsequent photoreduction of [ 14C]-protochlorophyllide was analyzed by high performance liquid chromatography of pigments extracted from illuminated leaves and plastids. The plastids used in this study were isolated in the dark from leaves at the end of the 2 h labelling period. Three major results were obtained: - 1
The extent of protochlorophyllide reduction in vivo was rapidly reduced as a function of the preillumination period. In 24 h preilluminated plants only a small fraction of the radioactively labelled protochlorophyllide was reduced during the subsequent light period. - 2
The amount of NADPH-protochlorophyllide oxidoreductase (EC 1.6.99.-) present in plastids of fully-green plants was drastically reduced relative to levels in plastids of dark-grown plants as estimated by the methods of immunoblotting of plastid proteins and immunogold labelling of ultrathin sections of the leaf tissue. - 3
In etiolated plants light seemed to affect the reduction of protochlorophyllide directly through the excitation of protochlorophyllide. In fully green plants, however, light also affected chlorophyll formation indirectly by the supply of NADPH via photosynthetic electron transport. 相似文献
16.
Fatty acid and glycerolipid biosynthesis from [ 14C]acetate by isolated pea root plastids is completely dependent on exogenously supplied ATP. CTP, GTP, and UTP are ineffective in supporting fatty acid biosynthesis, all resulting in <3% of the activity obtained with ATP. However, ADP alone or in combination with inorganic phosphate (Pi) or pyrophosphate (PPi) gave up to 28% of the ATP control activity, whereas AMP + PPi, PPi alone, or Pi alone were ineffective in promoting fatty acid biosynthesis. The components of the dihydroxyacetonephosphate (DHAP) shuttle (DHAP, oxaloacetate, and Pi), which promote intraplastidic ATP synthesis, restored 41% of the control ATP activity, whereas the omission of any of the shuttle components abolished this activity. When the DHAP shuttle components were supplemented with ADP, the rate of fatty acid biosynthesis was completely restored to that observed in the presence of ATP. Under the conditions of ADP + DHAP shuttle-driven fatty acid biosynthesis, exogenously supplied ATP gave only a 6% additional stimulation of activity. In general, variations in the energy source had only small effects on the proportions of radioactive fatty acids and glycerolipids synthesized. Most notably, higher amounts of radioactive oleic acid, free fatty acids, and diacylglycerol and lower amounts of phosphatidic acid were observed when ADP and/or the DHAP shuttle were substituted for ATP. The results presented here indicate that, although isolated pea root plastids readily utilize exogenously supplied ATP for fatty acid biosynthesis, these plastids can also synthesize sufficient ATP when provided with the appropriate cofactors. 相似文献
17.
A method of isolating DNA from pea chloroplasts (ch-DNA) in CsCl density gradient is described. DNA preparations are free of 5-methylcytosine and have a melting temperature of 86.5 degrees. Denatured DNA molecules completely reassociate for 3 hours at 60 degrees C. It is concluded that the preparations obtained are pure ch-DNA. 相似文献
18.
During short term labeling of expanding leaves of seven plant species with [1- 14C]acetate, 35 to 64% of the label incorporated into lipids was found in phosphatidylcholine and 5 to 24% in phosphatidylglycerol. In pumpkin, sunflower, broad bean, and maize, only 4 to 12% of the label was found in diacylgalactosylglycerol, but in tomato, parsley, and spinach, the proportion was 17 to 31%. The latter group was further distinguished by having diacylgalactosylglycerol containing C16:3. The proportions of total incorporated [1-14C]acetate entering the lipids could be manipulated in a predictable manner. Phosphatidylcholine labeling was depressed by treating intact leaves with glycerol or ethylene glycol monomethyl ether or by incubating leaf discs in vitro. An associated increase in phosphatidylglycerol labeling occurred within the first group of plants, whereas an increase in labeling of either diacylgalactosylglycerol, phosphatidylglycerol, or sulfolipid occurred within the second group. Treating intact leaves with glycerol or incubating leaf discs in vitro was shown to elevate cellular concentrations of sn-glycerol 3-phosphate. These results have been interpreted in terms of the two-pathway hypothesis for glycerolipid biosynthesis, in which it is proposed that phosphatidylcholine is synthesized via a different pathway (eukaryotic) to that for synthesis of phosphatidylglycerol (prokaryotic). Both pathways may contribute toward the synthesis of diacylgalactosylglycerol, with the contribution of each being assessed from the proportion of hexadecatrienoic acid found in the particular plant. 相似文献
20.
The incorporation into diglycerides of the acyl products synthesized from acetate by spinach chloroplasts was greatly stimulated by the addition of glycerol 3-phosphate. When UDP-galactose was added also, monogalactosyldiglycerides became the major products. Palmitate biosynthesis was stimulated about twofold by these additions, while oleate biosynthesis decreased slightly, so that oleate:palmitate ratios were in the range 0.6 to 0.8 rather than about 1.6 when glycerol 3-phosphate and UDP-galactose were not added. On the other hand, Triton X-100 greatly stimulated both oleate and palmitate biosynthesis to give oleate:palmitate ratios of about 2.0. The proportions of oleate and palmitate in the newly synthesized diglycerides, or in monogalactosyldiglycerides when exogenous UDP-galactose was added, did not always reflect the proportions of these two fatty acids synthesized from acetate. When oleate:palmitate ratios were ?1, equal amounts were incorporated into diglycerides or into monogalactosyldiglycerides. When oleate:palmitate ratios were <1, incorporation of palmitate into diglycerides and monogalactosyldiglycerides exceeded that of oleate. 1-Oleoyl, 2-palmitoyl glycerol compounds were the principal products under all conditions but 1,2-dipalmitoyl compounds were also quantitatively important when glycerol 3-phosphate alone, or glycerol 3-phosphate together with UDP-galactose, was added. The distribution of label in the constituent glycerol and fatty acid moieties when monogalactosyldiglycerides were synthesized from diglycerides is consistent with galactosylation occurring without modification or exchange of fatty acids. The distribution of 16- and 18-carbon acyl residues between the 1 and 2 stereospecific positions of newly synthesized monogalactosyldiglyceride was typical of the endogenous polyene monogalactosyldiglycerides. However when palmitate synthesis was in excess of oleate synthesis some palmitate was esterified in position 1, whereas in the endogenous monogalactosyldiglycerides hexadecatrienoate is confined to position 2. 相似文献
|