首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major cost of social behavior is the increased risk of exposure to parasites and infection. Animals utilize social information, including chemical signals, to recognize and avoid conspecifics infected with either endoparasites or ectoparasites. Here, we briefly discuss the relations among odors, parasite recognition, and avoidance, and consider some of the associated hormonal, neural, and genomic mechanisms. In rodents, odor cues mediate sexual and competitive interactions and are of major importance in individual recognition and mate detection and choice. Female mice distinguish between infected and uninfected males by urinary odors, displaying aversive response to, and avoidance of, the odors of infected individuals. This reduces both the likelihood of the transmission of parasites to themselves and allows females to select for parasite-free males. This set of olfactory and mate choice responses can be further modulated by social factors such as previous experience and exposure to infected males and the mate choices of other females. Male mice, who also face the threat of infection, similarly distinguish and avoid parasitized individuals by odor, thus reducing their likelihood of infection. This recognition and avoidance of the odors of infected individuals involves genes for the neuropeptide, oxytocin (OT), and estrogenic mechanisms. Mice with deletions of the oxytocin gene [OT knockout mice (OTKO)] and mice whose genes for estrogen receptor (ER)-alpha or ER-beta have been disrupted [ER knockout mice (ERKO), alpha-ERKO and beta-ERKO] are specifically impaired in their recognition of, aversion to, and memory of the odors of infected individuals. These findings reveal some of the genes involved in the mediation of social recognition in the ecologically relevant context of parasite recognition and avoidance.  相似文献   

2.
Disgust can be thought of as an affective system that has evolved to detect signs of pathogens, parasite and toxins as well as to stimulate behaviors that reduce the risk of their acquisition. Disgust incorporates social cognitive mechanisms to regulate exposure to and, or anticipate and avoid exposure to pathogens and toxins. Social cognition entails the acquisition of social information about others (ie, social recognition) and from others (ie, social learning). This involves recognizing and assessing other individuals and the pathogen/parasite/contamination/toxin threat they pose and deciding about when and how to interact with and, or avoid them. Social cognition provides a frame‐work for examining the expression of disgust and the associated neurobiological mechanisms. Here, we briefly consider the relations between social cognition and pathogen/parasite/toxin avoidance behaviors. We briefly discuss aspects of: (1) the odor mediated social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on disgust mate and social partner choice; (2) the roles of “out‐groups” (strangers, unfamiliar individuals) and “in‐groups” (familiar individuals) in the expression of disgust and pathogen avoidance behaviors; (3) individual and social learning of disgust and empathy for disgust; (4) toxin elicited disgust and anticipatory disgust; (5) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin and estrogenic mechanism associated with social cognition and the expression of disgust. These findings on the social neuroscience of disgust have a direct bearing on our understanding of the roles of disgust in shaping human and nonhuman social behavior.  相似文献   

3.
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  相似文献   

4.
The present study showed that parasites influence both the responses of uninfected females to males and the responses of female hosts to infected males. In female laboratory mice one of the consequences of exposure to the olfactory cues associated with an infected male was a reduction of the reactivity to a thermal surface, i.e. pain inhibition or analgaesia. Uninfected oestrous and non-oestrous female mice displayed marked analgaesic responses after exposure to the odours of males infected with either the enteric single-host nematode parasite, Heligmosomoides polygyrus, or the protozoan parasite, Eimeria vermiformis. The uninfected oestrous females distinguished between infected and physically stressed males, displaying a greater analgaesic response to the odours of infected males. These analgaesic responses and their anxiety/ fearfulness-associated behavioural correlates could elicit either a reduced interest in, or avoidance of, parasitized males by females. Oestrous female mice infected with H. polygyrus displayed a reduced analgaesic response to the odours of the infected males and differentially responded to the odours of males infected with either the same (H. polygyrus) or a different parasite (E. vermiformis). An exposure time of 1 min elicited minimal responses to the odours of males infected with the same parasite, H. polygyrus, and an attenuated, though significant, non-opioid peptide-mediated analgaesic response to males infected with E. vermiformis. An exposure time of 30 min elicited similar markedly reduced endogenous opioid peptide-mediated analgaesic responses to the odours of both of the categories of infected males. The responses to the odours of a stressed male were, however, unaffected by the parasitic infection. The reduced analgaesic responses of the parasitized females to the odours of infected males may involve either enhanced odour familiarity and responses to group odour templates and/or neuromodulatory shifts resulting in reduced fearfulness and potentially greater interest in the infected males.  相似文献   

5.
Chemical signals yield critical socio-ecological information in many animals, such as species, identity, social status or sex, but have been poorly investigated in birds. Recent results showed that chemical signals are used to recognize their nest and partner by some petrel seabirds whose olfactory anatomy is well developed and which possess a life-history propitious to olfactory-mediated behaviours. Here, we investigate whether blue petrels (Halobaena caerulea) produce some chemical labels potentially involved in kin recognition and inbreeding avoidance. To overcome methodological constraints of chemical analysis and field behavioural experiments, we used an indirect behavioural approach, based on mice olfactory abilities in discriminating odours. We showed that mice (i) can detect odour differences between individual petrels, (ii) perceive a high odour similarity between a chick and its parents, and (iii) perceive this similarity only before fledging but not during the nestling developmental stage. Our results confirm the existence of an individual olfactory signature in blue petrels and show for the first time, to our knowledge, that birds may exhibit an olfactory kin label, which may have strong implications for inbreeding avoidance.  相似文献   

6.
In aquatic systems, olfaction plays an important role in acquiring information about the social environment and influences important behaviours in various contexts, including predator avoidance, foraging, aggressive and reproductive behaviour and mate selection. As the presence of diseases might modify individual odour, fish may use the variability in conspecifics’ odours as an indicator of the health status and infectious load of potential mates. Here, female Nile tilapia were tested for their ability to detect infected males and discriminate between bacterial infected and uninfected individuals by means of chemical cues. Females were allowed to choose between the odours of males infected by Aeromonas hydrophila bacteria and uninfected males. The findings show that female Nile tilapia initially showed a preference for infected males in terms of their first choice in a dichotomous choice test, but the total duration of time spent with the stimulus from infected males was not longer than that for the uninfected males. This may indicate that males at early stages of infection, i.e., without advanced clinical signs of infection, emit odours that allow them to enjoy the benefits of socialization when the infection is not yet detected by conspecifics. Thus, in the context of reproduction, males might attract female partners and have some chance of reproducing, before being avoided.  相似文献   

7.
Rats infected with the protozoan parasite Toxoplasma gondii exhibit reduced avoidance of predator odours. This behavioural change is likely to increase transmission of the parasite from rats to cats. Here, we show that infection with T. gondii increases the propensity of the infected rats to make more impulsive choices, manifested as delay aversion in an intertemporal choice task. Concomitantly, T. gondii infection causes reduction in dopamine content and neuronal spine density of the nucleus accumbens core, but not of the nucleus accumbens shell. These results are consistent with a role of the nucleus accumbens dopaminergic system in mediation of choice impulsivity and goal-directed behaviours. Our observations suggest that T. gondii infection in rats causes a syndromic shift in related behavioural constructs of innate aversion and making foraging decisions.  相似文献   

8.
《Animal behaviour》1986,34(3):685-695
Laboratory studies of nestmate recognition in gynes (potential queens) of the social wasp, Polistes fuscatus, indicate that recognition odours have both a heritable and an environmental component. In addition, both endogenous odours (acquired as brood) and adult-acquired odours appear to mediate nestmate recognition. Heritable and environmental, as well as endogenous and adult-acquired recognition odours, are not additive in their effect on tolerance, suggesting a ‘cue similarity threshold’ model of recognition rather than a model that postulates tolerance continuouusly increasing with increasing degree of similarity between the learned and perceived cue. Young gynes (1·7–71·8 h after emergence) clearly possess recognition odours and there is no evidence that the age of a young gyne affects its expression of recognition odours. The failure of a wasp, isolated from its natal nest at emergence, to recognize its nestmates is due to the disruption of its learning of recognition odours, not to its acquisition of recognition odours. Gynes appear not to learn recognition odours directly from themselves. Young gynes deprived of the opportunity to learn recognition odours from their natal nest treat all gynes as nestmates, regardless of relatedness. This latter result, together with additional evidence, suggests that the ontogeny of nestmate recognition ability involves the development of intolerance to unfamiliar odours rather than the development of tolerance to familiar odours.  相似文献   

9.
Small mammals have a number of means to detect and avoid predators, including visual, auditory and olfactory cues. Olfactory cues are particularly important for nocturnal or fossorial species where visual cues would not be as reliable. The Cape ground squirrel (Xerus inauris) is a semi‐fossorial, diurnal mammal from southern Africa. Cape ground squirrels encounter multiple species of predatory snake that pursue individuals underground where visual and social cues are limited. We assessed whether Cape ground squirrels use odours to discriminate between snakes by presenting a non‐venomous snake, a venomous snake and a control odour collected on polyethylene cubes to 11 adult female squirrels from 11 different social groups. Cape ground squirrels responded by inspecting the cube, displaying snake harassment–associated behaviours and decreasing time spent in close proximity to snake odours when compared with a control. They also displayed discrimination between two snake species by increasing the frequency of cube inspection and increasing harassment behaviours with venomous snake odours when compared with non‐venomous snake odours. We conclude that Cape ground squirrels respond with snake‐specific antipredator behaviours when presented olfactory cues alone. Olfactory discrimination may be maintained by the decreased utility of other methods of predator detection: sight and group detection, in below‐ground encounters.  相似文献   

10.
Most studies of predator avoidance behaviours have focussed on single‐predator systems, despite the fact that prey often are confronted with predator rich environments. In the presence of more than one predator, prey may have to choose between avoiding one predator over another. How prey cope with exposure to several enemies simultaneously remains largely untested. In this study I set out to investigate if skinks showed preferential avoidance of snake odours based on the relative predation risk posed by different snake species. This relative predation risk was estimated using information on density, diet specificity and foraging habit of each snake species. I tested retreat‐site selection in two‐choice tests, where lizards chose between different combinations of control and snake treated retreat‐sites as well as two retreat‐sites treated with different snake species odours. Lizards preferred control–treated retreat‐sites to those treated with snake odours and showed a differential avoidance response to refuges treated with odours from different snake species. There was strong evidence to suggest that lizards preferentially avoided refuges with the odours of the snake that posed the greatest predation risk, the white‐lipped snake (Drysdalia coronoides). Naïve juvenile lizards were also tested and their response was similar to the adults demonstrating that the behaviour is innate and not the result of higher encounter rates of more common snake odours. To my knowledge this is one of the first studies to demonstrate that prey can prioritize avoidance to a single most dangerous predator in the face of several predators and conflicting avoidance responses.  相似文献   

11.
The retention of social memory during long periods of separation, such as hibernation or migration, has not been well documented, despite evidence for long-term social relationships in migrating species or in long-lived sedentary species. We investigated the ability of captive Belding's ground squirrels, Spermophilus beldingi, to remember previously familiar individuals as well as littermates after 9 months of isolation. Before hibernation, young ground squirrels discriminated between odours of familiar and unfamiliar individuals, as shown by greater investigation of a novel individual's odour. The following spring, these yearlings did not respond differentially to odours of previously familiar and unfamiliar individuals, suggesting that memory for familiar conspecifics was lost during hibernation. In contrast, both female and male yearlings continued to discriminate between odours of littermates and previously familiar nonlittermates. Thus, recognition of close kin was maintained during prolonged social isolation, but recognition of familiar, unrelated individuals was not. If re-establishment of familiarity is not costly or if adults rarely interact with the same individuals in successive years, then selection may not favour retention of individual memories of particular conspecifics over the winter. Even though males rarely encounter kin after dispersal, yearling males did recognize their siblings, suggesting that the relative costs of maintaining kin-recognition abilities year-round may be low. Possible mechanisms underlying the formation and maintenance of individual and kin recognition are discussed. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

12.
Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them twice to the parasite and then compared their social immune response with that of naive mini-nests that had not been experimentally exposed to the parasite. Ants allogroomed individuals exposed to the parasite, doing this both for those freshly treated with the parasite, which were infectious but not yet infected, and for those treated 2 days previously, which were already infected but no longer infectious. We found that ants exposed to the parasite received more allogrooming in immunized mini-nests than in naive mini-nests. This increased the survival of the freshly treated ants, but not those that were already infected. The results thus indicate that the social immune response of this leaf-cutting ant is adaptive, with the group exhibiting a greater and more effective response to a parasite that it has previously been exposed to.  相似文献   

13.
Although the evolutionary causes and consequences of pathogen avoidance have been gaining increasing interest, there has been less attention paid to the proximate neurobiological mechanisms. Animals gauge the infection status of conspecifics and the threat they represent on the basis of various sensory and social cues. Here, we consider the neurobiology of pathogen detection and avoidance from a cognitive, motivational and affective state (disgust) perspective, focusing on the mechanisms associated with activating and directing parasite/pathogen avoidance. Drawing upon studies with laboratory rodents, we briefly discuss aspects of (i) olfactory-mediated recognition and avoidance of infected conspecifics; (ii) relationships between pathogen avoidance and various social factors (e.g. social vigilance, social distancing (approach/avoidance), social salience and social reward); (iii) the roles of various brain regions (in particular the amygdala and insular cortex) and neuromodulators (neurotransmitters, neuropeptides, steroidal hormones and immune components) in the regulation of pathogen avoidance. We propose that understanding the proximate neurobiological mechanisms can provide insights into the ecological and evolutionary consequences of the non-consumptive effects of pathogens and how, when and why females and males engage in pathogen avoidance.  相似文献   

14.
Parasites can influence different host behaviours including foraging, mate choice and predator avoidance. Several recent papers have shown reduced learning abilities in infected insects. However, it is difficult to separate the effects of the immune response from the direct effects of the parasite. Using a free-flying learning paradigm, this paper shows that learning performance is impaired in bumble-bees (Bombus terrestris) that are not infected but whose immune system is stimulated non-pathogenically. This demonstrates that before it is assumed that a parasite has a direct effect on a host's behaviour, the effect of the immune response stimulated by the parasite must first be quantified.  相似文献   

15.
Colonies of the polistine wasp Polistes dominulus are parasitized by the permanent worker-less social parasite Polistes sulcifer. After usurpation of the host colony, parasite females are characterized by a change in the relative proportions of their cuticular hydrocarbons to match those of the host species. In this paper we present evidence from field data and laboratory experiments that P. sulcifer females adopt a colony-specific host odour that facilitates their acceptance by host females of the usurped colony. Presentation experiments demonstrate that parasite females are recognized as foreign individuals by workers of other parasitized nests. We show that the modification of parasite cuticular compounds is sufficient for this recognition. This provides evidence that, after invasion, P. sulcifer queens do not require appeasement or propaganda substances for their acceptance by host colonies. Furthermore, multivariate discriminant analysis of the cuticular hydrocarbon proportions of the parasites after usurpation assigns the parasites together with P. dominulus females of their own host colony. To the authors' knowledge, this is the first confirmation that social parasites adopt colony-specific host odours.  相似文献   

16.

Background

Among invertebrates, specific pheromones elicit inherent (fixed) behavioural responses to coordinate social behaviours such as sexual recognition and attraction. By contrast, the much more complex social odours of mammals provide a broad range of information about the individual owner and stimulate individual-specific responses that are modulated by learning. How do mammals use such odours to coordinate important social interactions such as sexual attraction while allowing for individual-specific choice? We hypothesized that male mouse urine contains a specific pheromonal component that invokes inherent sexual attraction to the scent and which also stimulates female memory and conditions sexual attraction to the airborne odours of an individual scent owner associated with this pheromone.

Results

Using wild-stock house mice to ensure natural responses that generalize across individual genomes, we identify a single atypical male-specific major urinary protein (MUP) of mass 18893Da that invokes a female's inherent sexual attraction to male compared to female urinary scent. Attraction to this protein pheromone, which we named darcin, was as strong as the attraction to intact male urine. Importantly, contact with darcin also stimulated a strong learned attraction to the associated airborne urinary odour of an individual male, such that, subsequently, females were attracted to the airborne scent of that specific individual but not to that of other males.

Conclusions

This involatile protein is a mammalian male sex pheromone that stimulates a flexible response to individual-specific odours through associative learning and memory, allowing female sexual attraction to be inherent but selective towards particular males. This 'darcin effect' offers a new system to investigate the neural basis of individual-specific memories in the brain and give new insights into the regulation of behaviour in complex social mammals.See associated Commentary http://www.biomedcentral.com/1741-7007/8/71
  相似文献   

17.
Predator odours and habitat structure are thought to influence the behaviour of small mammalian prey, which use them as cues to reduce risks of predation. We tested this general hypothesis for house mice, Mus domesticus, by manipulating fox odour density via addition of fox scats and habitat via patchy mowing of vegetation, for populations in 15 × 15-m field enclosures. Using giving-up densities (GUDs), the density of food remaining when an animal quits harvesting a patch, we measured foraging behaviours in response to these treatments. Mice consistently avoided open areas, leaving GUDs two to four times greater in these areas than in densely vegetated patches. However, mouse GUDs did not change in response to the addition of fox scats, even immediately after fresh scats were added. There was no interaction between fox odour and habitat use. We then tested whether habituation to fox odours had occurred, by comparing the individual responses to scats of eight mice born into enclosures with fox scats to those of eight mice born into scat-free enclosures and five wild mice. In smaller enclosures, GUDs of trays with scats did not differ from GUDs of trays without scats for any treatment. We conclude that exposure to high levels of fox odours did not alter the foraging behaviour of mice, but that mice did reduce foraging in areas where habitat was removed, perceiving predation risk to be greater in these areas than controls. We suggest further that studies using the ‘scat-at-trap’ technique, which have shown avoidance of predator odours by mice and other small mammals, may overestimate the general avoidance of predator odours by free-living prey, which must forage with a constant background of predator odours.  相似文献   

18.
European corn borer (ECB) neonate larvae are capable of orienting towards maize odours and of avoiding spinach odours. We previously reported that maize odours’ attraction was dependent on the stimulus regime. This led us to propose that maize odours could have a repellent or attractive effect depending on their concentration. In this work, we tested this hypothesis by evaluating attraction or avoidance of neonate ECB larvae to four concentrations of each of six single green leaf volatiles (GLVs); these are commonly found in maize and other plants. We found a dose‐dependent effect for all of these GLVs with the exception of 1‐hexyl acetate, which did not elicit any orientation behaviour over the range of concentrations tested. These five GLVs were repellent at high concentrations, while two of them were attractive at a lower concentration. These observations indicate for the first time that plant odours induce different behaviours in ECB neonate larvae depending not only on their chemical identity but also their concentration.  相似文献   

19.
In species with multiple paternity or maternity, animals may best assess their relatedness to unfamiliar conspecifics by comparing their own phenotype(s) with those of unidentified individuals. Yet whether animals can recognize kin through self-matching is controversial. Because golden hamsters (Mesocricetus auratus) mate multiply and can produce multiply sired litters, they were tested for their ability to use self-matching for kin recognition. Hamsters that were reared only with non-kin since birth responded differentially to odours of unfamiliar relatives and non-relatives. Postnatal association with kin was not necessary for this discrimination. Prenatal learning was unlikely because of delayed production and perception of social odours. To our knowledge, this is the first demonstration that a vertebrate can use its own phenotype for kin-recognition purposes without prior experience with kin. By using itself as a referent, rather than its siblings or parents, a golden hamster may be better able to direct nepotism towards the most appropriate individuals. Kin discrimination via self-inspection may be especially important in nepotistic contexts (to identify most closely related conspecifics), whereas inclusion of the phenotypes of close kin as referents may be favoured in mate-choice contexts (to identify all related individuals).  相似文献   

20.
Abstract Predation is recognized as a major selective pressure influencing population dynamics and evolutionary processes. Prey species have developed a variety of predator avoidance strategies, not least of which is olfactory recognition. However, within Australia, European settlement has brought with it a number of introduced predators, perhaps most notably the red fox (Vulpes vulpes) and domestic cat (Felis catus), which native prey species may be unable to recognize and thus avoid due to a lack of coexistence history. This study examined the response of native Tasmanian swamp rats (Rattus lutreolus velutinus) to predators of different coexistence history (native predator‐ spotted‐tail quoll (Dasyurus maculatus), domestic cats and the recently introduced red fox). We used an aggregate behavioural response of R. l. velutinus to predator integumental odour in order to assess an overall behavioural response to predation risk. Rattus lutreolus velutinus recognized the integumental odour of the native quoll (compared with control odours) but did not respond to either cat or fox scent (compared with control odur). In contrast, analyses of singular behaviours resulted in the conclusion that rats did not respond differentially to either native or introduced predators, as other studies have concluded. Therefore, measuring risk assessment behaviours at the level of overall aggregate response may be more beneficial in understanding and analysing complex behavioural patterns such as predator detection and recognition. These results suggest that fox and cat introductions (and their interactive effects) may have detrimental impacts upon small native Tasmanian mammals due to lack of recognition and thus appropriate responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号