首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oct-4属POU家族蛋白,是一类在动物早期胚胎发育过程中起重要作用的转录因子,参与维持细胞的全能性及未分化状态。Oct-4蛋白的主要结构特征为具有POU家族特有的保守结构域(POUS)和POU同源异型结构域(POUHD),这两个结构域可与DNA上特定区域形成双向结合,进而对基因转录进行调控。Sox-2是另一种转录因子,其HMG结构域可结合在DNA的特定序列上,并可通过与Oct-4的POUs结构域之间的蛋白质.蛋白质相互作用形成POU/HMG/DNA三元复合体以调控下游靶基因的表达。文章就POU家族成员Oct-4和HMG-box家族成员Sox-2在动物早期胚胎发育中调控部分下游基因表达的分子机制进行了概述。  相似文献   

3.
4.
5.
6.
7.
8.
9.
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
It is believed that there is symplastic isolation between the embryo (new sporophyte) and the endosperm (maternal-parental origin tissue, which nourishes the embryo) in angiosperms. However, in embryological literature there are rare examples in which plasmodesmata between the embryo suspensor and endosperm cells have been recorded (three species from Fabaceae). This study was undertaken in order to test the hypothesis that plasmodesmata between the embryo suspensor and the endosperm are not so rare but also occur in other angiosperm families; in order to check this, we used the Crassulaceae family because embryogenesis in Crassulaceae has been studied extensively at an ultrastructure level recently and also we tread members of this family as model for suspensor physiology and function studies. These plasmodesmata even occurred between the basal cell of the two-celled proembryo and endosperm cells. The plasmodesmata were simple at this stage of development. During the development of the embryo proper and the suspensor, the structure of plasmodesmata changes. They were branched and connected with electron-dense material. Our results suggest that in Crassulaceae with plasmodesmata between the endosperm and suspensor, symplastic connectivity at this cell-cell boundary is still reduced or blocked at a very early stage of embryo development (before the globular stage). The occurrence of plasmodesmata between the embryo suspensor and endosperm cells suggests possible symplastic transport between these different organs, at least at a very early stage of embryo development. However, whether this transport actually occurs needs to be proven experimentally. A broader analysis of plants from various families would show whether the occurrence of plasmodesmata between the embryo suspensor and the endosperm are typical embryological characteristics and if this is useful in discussions about angiosperm systematic and evolution.  相似文献   

18.
19.
20.
Understanding oocyte maturation and early development in mammals is very important, especially because these cells serve as a source of materials useful in medical applications, such as ES cells. However, the limited availability of oocytes and embryos hampers the molecular dissection of the very early stage of mammalian development. Recently, the RNA interference technology has been acknowledged to be very effective and useful in diverse groups of cells, including mammalian cells. In this study, we examined whether short interfering RNAs (siRNAs) are applicable to mouse oocytes and preimplantation embryos, by targeting two genes, namely, Oct-3/4 and c-mos. siRNA injections successfully extinguished the production of these target genes. Moreover, the siRNA-injected oocytes and embryos showed phenotypes very similar to those exhibited by Oct-3/4- or Mos-knockout mice in previous studies. Accordingly, we concluded that siRNA is a useful tool in molecular studies on the early development of mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号