首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Hyaluronan-binding protein 1 (HABP1)/p32/gC1qR was characterized as a highly acidic and oligomeric protein, which binds to different ligands like hyaluronan, C1q, and mannosylated albumin. It exists as trimer in high ionic and reducing conditions as shown by crystal structure. In the present study, we have examined the structural changes of HABP1 under a wide range of ionic environments. HABP1 exhibits structural plasticity, which is influenced by the ionic environment under in vitro conditions near physiological pH. At low ionic strength HABP1 exists in a highly expanded and loosely held trimeric structure, similar to that of the molten globule-like state, whereas the presence of salt stabilizes the trimeric structure in a more compact fashion. It is likely that the combination of the high net charge asymmetrically distributed along the faces of the molecule and the relatively low intrinsic hydrophobicity of HABP1 result in its expanded structure at neutral pH. Thus, the addition of counter ions in the molecular environment minimizes the intramolecular electrostatic repulsion in HABP1 leading to its stable and compact conformations, which reflect in its differential binding toward different ligands. Whereas the binding of HABP1 toward HA is enhanced on increasing the ionic strength, no significant effect was observed with the two other ligands, C1q and mannosylated albumin. Thus, although HA interacts only with compact HABP1, C1q and mannosylated albumin can bind to loosely held oligomeric HABP1 as well. In other words, structural changes in HABP1 mediated by changes in the ionic environment are responsible for recognizing different ligands.  相似文献   

2.
Y Goto  A L Fink 《Biochemistry》1989,28(3):945-952
We present evidence that beta-lactamase is close to fully unfolded (i.e., random coil conformation) at low ionic strength at the extremes of pH and that the presence of salt causes a cooperative transition to a conformation with the properties of a molten globule, namely, a compact state with native-like secondary structure but disordered side chains (tertiary structure). The conformation of beta-lactamase I from Bacillus cereus was examined over the pH 1.5-12.5 region by circular dichroism (CD), tryptophan fluorescence, dynamic light scattering, and 1-anilino-8-naphthalenesulfonate (ANS) binding. Under conditions of low ionic strength (I = 0.05) beta-lactamase was unfolded below pH 2.5 and above pH 11.5, on the basis of the far-UV and near-UV CD and tryptophan fluorescence. However, at high ionic strength and low pH an intermediate conformation (state A) was observed, with a secondary structure content similar to that of the native protein but a largely disordered tertiary structure. The transition from the unfolded state (U) to state A induced by KCl was cooperative and had a midpoint at 0.12 M KCl (I = 0.17 M) at pH 1.6. A similar conformation (state B) was observed at high pH and high ionic strength. The transition from the alkaline U state to state B induced by KCl at pH 12.2 was cooperative and had a midpoint at 0.6 M KCl (I = 0.65 M). Light scattering measurements showed that state B was compact although somewhat expanded compared to the N state. The compactness of state A could not be determined due to its strong propensity to aggregate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Lin SH  Faller LD 《Biochemistry》2005,44(5):1482-1494
The conformational change in the unphosphorylated sodium pump was studied as a function of ionic strength to learn whether the rate of the reaction is affected. The results corroborate our proposal [Smirnova, I. N., Lin, S.-H., and Faller, L. D. (1995) Biochemistry 34, 8657-8667] that competitive binding of the transported ions to two (or more) equivalent sites regulates a concerted change in protein conformation. An approximately 10-fold increase in ionic strength decreased the intrinsic affinity of the Na+ conformation of the enzyme for both Na+ and K+ roughly 3-fold, decreased the rate of the change from Na+ to K+ conformation by more than half, and increased the rate of the reverse reaction by about an order of magnitude. The logarithm of the first-order rate constant for the change from Na+ to K+ conformation depended inversely upon the square root of the ionic strength with the extrapolated value at zero ionic strength expressed as a second-order rate constant (1.1 x 10(9) M(-1) sec(-1)) approaching the limit for a diffusion-controlled reaction. The first-order rate constant for the change from K+ to Na+ conformation depended directly upon ionic strength and extrapolated to a zero-ionic-strength value (0.002 s(-1)) far below the diffusion limit. The results are compatible with shielding of oppositely charged domains that move through the solvent when the pump cycles between conformations. Electrostatic interactions between domains evidently contribute to the driving force for the change from Na+ to K+ conformation and to the stability of the K+ conformation.  相似文献   

4.
The interaction between the native DNA macromolecules and Ca2+, Mn2+, Cu2+ ions in solutions of low ionic strength (10(-3) M Na+) is studied using the methods of differential UV spectroscopy and CD spectroscopy. It is shown that the transition metal ions Mn2+ exercise binding to the nitrogen bases of DNA at concentrations approximately 5 x 10(-6) M and form chelates with guanine of N7-Me(2+)-O6 type. Only at high concentrations in solution (5 x 10(-3) M) do Ca2+ ions interact with the nitrogen bases of native DNA. In the process of binding to Ca2+ and Mn2+ the DNA conformation experiences some changes under which the secondary structure of the biopolymer is within the B-form family. The DNA transition to the new conformation is revealed by its binding to Cu2+ ions.  相似文献   

5.
Henzl MT  Larson JD  Agah S 《Biochemistry》2000,39(19):5859-5867
The mammalian genome encodes both alpha- and beta-parvalbumin isoforms. The rat beta-parvalbumin (aka "oncomodulin") is more stable than the alpha isoform at physiological pH and ionic strength, despite its substantially higher charge density and truncated C-terminal helix [Henzl, M. T., and Graham, J. S. (1999) FEBS Lett. 442, 241-245]. Reasoning that solvent interactions could contribute to this unexpected finding, we have examined the stabilities of the Ca(2+)-free alpha- and beta-parvalbumins as a function of Na(+) and K(+) concentration. Differential scanning calorimetry data suggest that, at physiological pH and ionic strength, the beta isoform binds roughly 2 equiv of Na(+) or a single equivalent of K(+) with moderate affinity. Under comparable conditions, the alpha isoform apparently binds just 1 equiv of Na(+) and essentially no K(+). Isothermal titration calorimetry experiments suggest that the bound monovalent ions occupy the EF-hand motifs. In 0.15 M K(+), at pH 7.4, the stability of the apo-beta-parvalbumin exceeds that of the alpha isoform by approximately 2.6 kcal/mol at 37 degrees C and by approximately 3.0 kcal/mol at 25 degrees C. The latter value represents a substantial fraction of the difference in Ca(2+)-binding free energies measured in vitro for the two proteins. Significantly, however, these results do not completely explain the paradoxical stability of the beta isoform, which maintains its higher melting temperature under all conditions examined.  相似文献   

6.
The essential component of infectious prions is a misfolded protein termed PrPSc, which is produced by conformational change of a normal host protein, PrPC. It is currently unknown whether PrPSc molecules exist in a unique conformation or whether they are able to undergo additional conformational changes. Under commonly used experimental conditions, PrPSc molecules are characteristically protease-resistant and capable of inducing the conversion of PrPC molecules into new PrPSc molecules. We describe the effects of ionic strength, copper, and zinc on the conformation-dependent protease resistance and conversion-inducing activity of PrPSc molecules in scrapie-infected hamster brains. In the absence of divalent cations, PrPSc molecules were > 20-fold more sensitive to proteinase K digestion in low ionic strength buffers than in high ionic strength buffers. Addition of micromolar concentrations of copper or zinc ions restored the protease resistance of PrPSc molecules under conditions of low ionic strength. These transition metals also controlled the conformation of purified truncated PrP-(27-30) molecules at low ionic strength, confirming that the N-terminal octapeptide repeat region of PrPSc is not required for binding to copper or zinc ions. The protease-sensitive and protease-resistant conformations of PrPSc were reversibly interchangeable, and only the protease-resistant conformation of PrPSc induced by high ionic strength was able to induce the formation of new protease-resistant PrP (PrPres) molecules in vitro. These findings show that PrPSc molecules are structurally interconvertible and that only a subset of PrPSc conformations are able to induce the conversion of other PrP molecules.  相似文献   

7.
Temperature-, ionic strength-, calcium ion- and pH-dependence of spatial structure of crustacin have been studied using CD and fluorescent spectroscopy. Secondary structure of crustacin was estimated by CD spectra. An irreversible conformational transition of crustacin's protein moiety connected with the loss of CEA-binding activity has been found at ca. 50 degrees C. Crustacin is shown to be calcium-binding protein, stability of the native crustacin conformation being markedly enhanced by calcium ions (1 mM Ca2+ shifted up the transition temperature by approximately 10 degrees C). Calcium binding and ionic strength increase led to alteration of both secondary and tertiary structures of crustacin. The highest CEA-binding activity was observed for the calcium-bond form of crustacin. A lack of specific interaction of crustacin with some saccharides was shown. Interrelation between conformation and immunochemical activity of crustacin is discussed.  相似文献   

8.
Limited chemical bromination of poly[r(C-G)] (32% br8G, 26% br5C) results in partial modification of guanine C8 and cytosine C5, producing a mixture of A- and Z-RNA forms. The Z conformation in the brominated polynucleotide is stabilized at much lower ionic strength than in the unmodified polynucleotide. More extensive bromination of poly[r(C-G)] (greater than 49% br8G, 43% br5C) results in stabilization of a form of RNA having a Z-DNA-like (ZD) CD spectrum in low-salt, pH 7.0-7.5 buffers. Raising the ionic strength to 6 M NaBr or NaClO4 results in a transition in Br-poly[r(C-G)] to a Z-RNA (ZR) conformation as judged by CD spectroscopy. At lower ionic strength Z-DNA-like (ZD) and A-RNA conformations are also present. 1H NMR data demonstrate a 1/1 mixture of A- and Z-RNAs in 110 mM NaBr buffer at 37 degrees C. Nuclear Overhauser effect (NOE) experiments permit complete assignments of GH8, CH6, CH5, GH1', and CH1' resonances in both the A- and Z-forms. GH8----GH1' NOEs demonstrate the presence of both A- and Z-form GH8 resonances in slow exchange on the NMR time scale. The NMR results indicate that unbrominated guanine residues undergo transition to the syn conformation (Z-form). Raman scattering data are consistent with a mixture of A- and Z-RNAs in 110 mM NaCl buffer at 37 degrees C. Comparison with the spectrum of Z-DNA indicates that there may be different glycosidic torsion angles in Z-RNA and Z-DNA [Tinoco, I., Jr., Cruz, P., Davis, P., Hall, K., Hardin, C. C., Mathies, R. A., Puglisi, J. D., Trulson, M. O., Johnson, W. C., & Neilson, T. (1986) in Structure and Dynamics of RNA, pp 55-68, Plenum, New York].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The apparent equilibrium constant (Kapp) of the alkaline transition (AT) of beef heart cytochrome c, obtained from pH titrations of the current intensities in cyclic voltammetry experiments, has been measured as a function of the temperature from 5 to 65 degrees C, at different ionic strength (I = 0.01-0.2 M). The temperature profile of the pKapp values is biphasic and yields two distinct sets of DeltaH degrees 'AT and DeltaS degrees 'AT values below and above approximately 40 degrees C. In the low-temperature range, the process is endothermic and is accompanied by a small positive entropy change, while at higher temperatures it becomes less endothermic and involves a pronounced entropy loss. The temperature dependence of the transition thermodynamics is most likely the result of the thermal transition of native ferricytochrome c from a low-T to an high-T conformer which occurs at alkaline pH values at a temperature comparable with above (Ikeshoji, T., Taniguchi, I., and Hawkridge, F. M. (1989) J. Electroanal. Chem. 270, 297-308; Battistuzzi, G., Borsari, M., Sola, M., and Francia, F. (1997) Biochemistry 36, 16247-16258). Thus, it is apparent that the transitions of the two native conformers to the corresponding alkaline form(s) are thermodynamically distinct processes. It is suggested that this difference arises from either peculiar transition-induced changes in the hydration sphere of the protein or to the preferential binding of different lysines to the heme iron in the two temperature ranges. Extrapolation of the Kapp values at null ionic strength allowed the determination of the thermodynamic equilibrium constants (Ka) at each temperature, hence of the "true" standard thermodynamic parameters of the transition. The pKa value at 25 degrees C was found to be 8.0. A pKapp value of 14.4 was calculated for the alkaline transition of ferrocytochrome c at 25 degrees C and I = 0.1 M. The much greater relative stabilization of the native state in the reduced as compared to the oxidized form turns out to be almost entirely enthalpic in origin, and is most likely due to the greater affinity of the methionine sulfur for the Fe(II) ion. Finally, it is found that the Debye-Hückel theory fits the ionic strength dependence of the pKapp values, at least qualitatively, as observed previously for the ionic strength dependence of the reduction potential of this protein class. It is apparent that the increase in the pKapp values with increasing ionic strength is for the most part an entropic effect.  相似文献   

10.
I Feldman  D C Kramp 《Biochemistry》1978,17(8):1541-1547
A study of the effect of varying ionic strength on the glucose-induced quenching of tryptophan fluorescence of hexokinase isoenzymes A(P-I) and B(P-II) was carried out at pH 8.3 and pH 5.5. At p/ 8.3 both isoenzymes gave apparently linear Scatchard-type data plots even with protein concentrations and ionic strengths for which both dimeric and monomeric forms of hexokinase coexist in signiciant amounts. Taking inco account a 1% accuracy in the experimental measurements, we concluded that the intrinsic dissociation constants K(M) and K(D), for the binding of glucose to the monomeric and dimeric forms of HkB, are within a factor of two of each other, i.e. K(D)/K(M) less than or equal to 2. The values of K(M), estimated from the apparent K, were so greatly influenced by ionic strength that it is clear that it is meaningless to compare K(M) and K(D) values measured at different ionic strengths as has been done in the literature. Curvature in the pH 5.5. fluorescence-quenching plots for relatively low ionic strengths demonstrates cooperativity for glucose-binding to the dimer, positive for HkA but negative for HkB. In contrast, the binding is relatively non-cooperative at high ionic strength at this pH. These results were attributed to the well known effect of salt-neutralization of side chain electrical charges on the flexibility and compactness of proteins.  相似文献   

11.
Y Goto  Y Hagihara 《Biochemistry》1992,31(3):732-738
It is known that, while melittin at micromolar concentrations is unfolded under conditions of low ionic strength at neutral pH, it adopts a tetrameric alpha-helical structure under conditions of high ionic strength, at alkaline pH, or at high peptide concentrations. To understand the mechanism of the conformational transition of melittin, we examined in detail the conformation of melittin under various conditions by far-UV circular dichroism at 20 degrees C. We found that the helical conformation is also stabilized by strong acids such as perchloric acid. The effects of various acids varied largely and were similar to those of the corresponding salts, indicating that the anions are responsible for the salt- or acid-induced transitions. The order of effectiveness of various monovalent anions was consistent with the electroselectivity series of anions toward anion-exchange resins, indicating that the anion binding is responsible for the salt- or acid-induced transitions. From the NaCl-, HCl-, and alkaline pH-induced conformational transitions, we constructed a phase diagram of the anion- and pH-dependent conformational transition. The phase diagram was similar in shape to that of acid-denatured apomyoglobin [Goto, Y., & Fink, A.L. (1990) J. Mol. Biol. 214, 803-805] or that of the amphiphilic Lys, Leu model polypeptide [Goto, Y., & Aimoto, S. (1991) J. Mol. Biol. 218, 387-396], suggesting a common mechanism of the conformational transition. The anion-, pH-, and peptide concentration-dependent conformational transition of melittin was explained on the basis of an equation in which the conformational transition is linked to proton and anion binding to the titratable groups.  相似文献   

12.
The thermal stability of the methionine repressor protein from Escherichia coli (MetJ) has been examined over a wide range of pH (pH 3.5-10) and ionic strength conditions using differential scanning calorimetry. Under reducing conditions, the transitions are fully reversible, and thermograms are characteristic of the cooperative unfolding of a globular protein with a molecular weight corresponding to the MetJ dimer, indicating that no dissociation of this dimeric protein occurs before unfolding of the polypeptide chains under most conditions. In the absence of reducing agent, repeated scans in the calorimeter show only partial reversibility, though the thermodynamic parameters derived from the first scans are comparable to those obtained under fully reversible conditions. The protein is maximally stable (Tm 58.5 degrees C) at about pH 6, close to the estimated isoelectric point, and stability is enhanced by increasing ionic strength in the range I = 0.01-0.4 M. The average calorimetric transition enthalpy (delta Hm) for the dimer is 505 +/- 28 kJ mol-1 under physiological conditions (pH 7, I = 0.125, Tm = 53.2 degrees C) and shows a small temperature dependence which is consistent with an apparent denaturational heat capacity change (delta Cp) of about +8.9 kJ K-1 mol-1. The effects of both pH and ionic strength on the transition temperature and free energy of MetJ unfolding are inconsistent with any single amino acid contribution and are more likely the result of more general electrostatic interactions, possibly including significant contributions from electrostatic repulsion between the like-charged monomers which can be modeled by a Debye-Hückel screened potential.  相似文献   

13.
We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.  相似文献   

14.
The acidic pH (1.5-7.0) and ionic strength (0.005-0.2M) dependence of thermodynamic functions of protein Sso7d from Sulfolobus solfataricus, cloned (c-Sso7d) and N-heptapeptide deleted [c-des(1-7)Sso7d] in glycine, and phosphate buffers was studied by means of adiabatic scanning calorimetry. The difference of proton binding was estimated from deltaHcal(pH), Td(pH), and (deltaTd/deltapH). It was found that a single group non-co-operative ionization with apparent pKa = 3.25 for both cloned and deleted proteins govern the thermal unfolding of two different (protonated and unprotonated) forms. deltaH degrees is found to be pH-independent and the changes in stability (deltaG degrees ) originate from changes in entropy terms. The apparent pKa measured at high salt concentrations decreases with 0.5 pH units from glycine to phosphate and the free energy of transfer at high ionic strength is 0.7 kcal/mol. The ionic strength dependence for the pH-dependent D-states is very different at pH 6.0 and 1.5. This is consistent with the property of denatured state to be more compacted or "closed" (Dc) at neutral or weak acidic pH and more random or "open" (Do) at acidic pH. From the Bjerrum's relation was found the number of screened charges important for the unfolding process. The main conclusions are: (1) the thermal stability of Sso7d has prominently entropic nature; (2) a single non-co-operative ionization controls the conformations in the D-state; and (3) pH-dependent conformational equilibrium could be functionally important in Sso7d-DNA recognition.  相似文献   

15.
J D Stoesz  R W Lumry 《Biochemistry》1978,17(18):3693-3699
It is well known that alpha-chymotrypsin can exist in two major conformational states, only one of which is active. We have examined the pH (pH 2.0--11.0) and salt (ionic strength 0.01--1.0) dependence of the transition between the active and inactive forms in detail. At low pH (pH 2.0--6.0) the equilibrium is very dependent on salt concentration, with high salt concentrations effectively stabilizing the active conformation. This apparent stabilization is an artifact due to the salt-dependent dimerization of alpha-chymotrypsin, and our data show that only active species form dimers and higher aggregates. At neutral pH (6.0--8.0) dimerization is absent, yet an ionic strength dependence remains. The effects show no lyotropic order and appear to be due to preferential salt binding to the active conformation at one or possibly a few sites. Above pH 6 (pH 6.0--11.0), the pH dependence can be described by a two-ionization mechanism at all ionic strengths. We report values for all seven equilibrium constants in the proposed mechanism at four ionic strengths (mu = 0.01, 0.05, 0.2, and 1.0). The transition is the first "refolding" transition to be studied at high precision, but, even so, certain decisions about the mechanism must await higher experimental precision not available with present methods.  相似文献   

16.
Conformational states of ribulosebisphosphate carboxylase (Rubisco) from Rhodospirillum rubrum were examined by far-UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-naphthalenesulfonate (ANS) binding. At pH 2 and low ionic strength (I = 0.01), Rubisco adopts an unfolded, monomeric conformation (UA1 state) as judged by far-UV CD and tryptophan fluorescence. As with other acid-unfolded proteins [Goto, Y., Calciano, L. J., & Fink, A. L. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 573-577], an intermediate conformation (A1 state) is observed at pH 2 and high ionic strength. The A1 state has an alpha-helical content equivalent to 64% of that present in the native dimer (N2 state). However, fluorescence measurements indicate that the tertiary structure of the A1 state is largely disordered. A site-directed mutant, K168E, which exists as a stable monomer [Mural, R. J., Soper, T. S., Larimer, F. W., & Hartman, F. C. (1990) J. Biol. Chem. 265, 6501-6505] was used to characterize the "native" monomer (N1 state). The far-UV CD spectra of the N1 and N2 states are almost identical, indicating a similar secondary structure content. However, the tertiary structure of the N1 state is less ordered than that of the N2 state. Nevertheless, when appropriately complemented in vitro, K168E forms an active heterodimer. Upon neutralization of acid-denatured Rubisco or dilution of guanidine hydrochloride-denatured Rubisco, unstable folding intermediates (I1 state) are rapidly formed. At concentrations at or below the "critical aggregation concentration" (CAC), the I1 state reverts spontaneously but slowly to the native states with high yield (greater than 65%). The CAC is temperature-dependent. At concentrations above the CAC, the I1 and the A1 states undergo irreversible aggregation. The commitment to aggregation is rapid [ef. Goldberg, M. E., Rudolph, R., & Jaenicke, R. (1991) Biochemistry 30, 2790-2797] and proceeds until the concentration of folding intermediate(s) has fallen to the CAC. In the presence of a molar excess of chaperonin 60 oligomers, the I1 state forms a stable binary complex. No stable binary complex between chaperonin 60 and the N1 state could be detected. Formation of the chaperonin 60-I1 binary complex arrests the spontaneous folding process. The I1 state becomes resistant to interaction with chaperonin 60 with kinetics indistinguishable from those associated with the appearance of the native states. In vitro complementation analysis indicated that the product of the chaperonin-facilitated process is monomeric.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Sperm-oocyte interaction during fertilization is multiphasic, with multicomponent events, taking place between zona pellucida (ZP) glycoproteins and sperm surface receptor. d-mannosylated glycoproteins, the major constituents of ZP are considered to serve as ligands for sperm binding. The presence of hyaluronan binding protein 1 (HABP1) on sperm surface of different mammals including cattle and its possible involvement in sperm function is already reported. Recently, we have demonstrated the specificity of clustered mannose as another ligand for HABP1 (Kumar et al., 2001: J Biosci 26:325-332). Here, we report that only N-linked mannosylated zona-glycoproteins bind to sperm surface HABP1. Labeled HABP1 interacts with ZP of intact oocyte of Bubalus bubalis, which can be competed with unlabeled HABP1 or excess d-mannosylated albumin (DMA). This data suggests the specific interaction of HABP1 with ZP, through clustered mannose residues. In order to examine the physiological significance of such an interaction, the capacity of sperm binding to oocytes under in vitro fertilization plates was examined either in presence of DMA alone or in combination with HABP1. The number of sperms, bound to oocytes was observed to reduce significantly in presence of DMA, which could be reversed by the addition of purified recombinant HABP1 (rHABP1) in the same plate. This suggests that sperm surface HABP1 may act as mannose binding sites for zona recognition.  相似文献   

18.
The pH and ionic strength dependence of conformation of the COOH-terminal fragment 206–316 (fragment FII) of thermolysin was monitored by far-uv CD and difference absorption measurements. This fragment was shown previously to possess the properties of a protein domain, i.e., able to refold into a stable nativelike structure [Fontana, A., Vita, C. & Chaiken, I. M. (1983) Biopolymers 22 , 69–78]. Analysis of the CD spectra in the pH range of 1–12 indicated that near pH 1, the conformation of fragment FII appears to be in an intermediate state (H) between the fully unfolded one (U) [the guanidine hydrochloride (Gdn · HCl)-induced unfolded state] and the nativelike state (N—that attained at neutral pH). Quantitative analysis of secondary structure from CD spectra revealed that state H at 4°C is characterized by some 30% α-helical structure, compared to 47% for state N. The heat- and Gdn · HCl-mediated unfolding transitions of state H were fully reversible and characterized by little cooperativity, which is taken as an indication that state H corresponds to several species possessing different, and low, conformational stabilities. The midpoint transition from state H to N occurs near pH 2.5, implying that the acid transition results from the titration of carboxyl groups of the fragment with anomalously low pK, as would be expected for groups involved in specific salt bridges. Fragment FII at pH 1 (state H) may be induced to exhibit nearly the same degree of helicity of state N simply by increasing the ionic strength of the solution, thus reducing the repulsive interactions between positive charges within the highly charged fragment at pH 1. The results obtained emphasize the role of electrostatic interactions in the folding and stability of fragment FII and suggest a mechanism of folding of the fragment from U to N involving an intermediate state characterized by an assembly of fluctuating α-helices.  相似文献   

19.
We demonstrate that bovine core histones are natively unfolded proteins in solutions with low ionic strength due to their high net positive charge at pH 7.5. Using a variety of biophysical techniques we characterized their conformation as a function of pH and ionic strength, as well as correlating the conformation with aggregation and amyloid fibril formation. Tertiary structure was absent under all conditions except at pH 7.5 and high ionic strength. The addition of trifluoroethanol or high ionic strength induced significant alpha-helical secondary structure at pH 7.5. At low pH and high salt concentration, small-angle X-ray scattering and SEC HPLC indicate the histones are present as a hexadecamer of globular subunits. The secondary structure at low pH was independent of the ionic strength or presence of TFE, as judged by FTIR. The data indicate that histones are able to adopt five different relatively stable conformations; this conformational variability probably reflects, in part, their intrinsically disordered structure. Under most of the conditions studied the histones formed amyloid fibrils with typical morphology as seen by electron microscopy. In contrast to most aggregation/amyloidogenic systems, the kinetics of fibrillation showed an inverse dependence on histone concentration; we attribute this to partitioning to a faster pathway leading to non-fibrillar self-associated aggregates at higher protein concentrations. The rate of fibril formation was maximal at low pH, and decreased to zero by pH 10. The kinetics of fibrillation were very dependent on the ionic strength, increasing with increasing salt concentration, and showing marked dependence on the nature of the ions; interestingly Gdn.HCl increased the rate of fibrillation, although much less than NaCl. Different ions also differentially affected the rate of nucleation and the rate of fibril elongation.  相似文献   

20.
Proteins containing phosphorylated Ser/Thr-Pro motifs play key roles in numerous regulatory processes in the cell. The peptidyl prolyl cis/trans isomerase Pin1 specifically catalyzes the conformational transition of phosphorylated Ser/Thr-Pro motifs. Here we report the direct analysis of the thermodynamic properties of the interaction of the PPIase Pin1 with its substrate-analogue inhibitor Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2 specifically targeted to the PPIase active site based on the combination of isothermal titration calorimetry and studies on inhibition of enzymatic activity of wt Pin1 and active site variants. Determination of the thermodynamic parameters revealed an enthalpically and entropically favored interaction characterized by binding enthalpy deltaH(ITC) of -6.3 +/- 0.1 kcal mol(-1) and a TdeltaS(ITC) of 4.1 +/- 0.1 kcal mol(-1). The resulting dissociation constant KD for binding of the peptidic inhibitor with 1.8 x 10(-8) M resembles the dissociation constant of a Pin1 substrate in the transition state, suggesting a transition state analogue conformation of the bound inhibitor. The strongly decreased affinity of Pin1 for ligand at increasing ionic strength implicates that the potential of bidentate binding of a substrate protein by the PPIase and the WW domain of Pin1 may be required to deploy improved efficiency and specificity of Pin1 under conditions of physiological ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号