首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A population of the alvar race of the perennial herb, Silene uniflora (Caryophyllaceae), which grows on thin soils in open alvar habitats on the Baltic island of Oland SE Sweden, was found to have an extended and more or less bimodal flowering phenology Large individuals produced flowers during both periods, while small, and presumably young, individuals only produced flowers in either of the two periods, or in part of both In the early flowering period plants were heavily infested by the seed-predatory larvae of a noctuid moth, Hadena confusa , but in the late flowering period only a small proportion of the fruits was attacked by the seed predators The proportion of flowers developing into fruits was consistently high throughout the season Both the number of seeds per capsule and the mass of seeds decreased over the flowering season However, the germination success of early and late seeds did not differ Thus, although differing in number of seeds, both early and late flowers contributed to individual reproductive success Large individuals started to flower early in the season and despite their high loss of seeds in the early part of the summer they contributed a larger number of seeds to the seed pool than smaller and later-flowering individuals Although selection was acting to favour later flowering during a year with high early seed predation, consistency of date of flower initiation and of relative predation impact on individuals across years was low suggesting that recurrent selection by seed predators is weak Seed predation, although heavy, is therefore judged to be unlikely to cause a significant evolutionary response on flowering phenology in this plant  相似文献   

2.
Seed predators can limit plant recruitment and thus profoundly impinge the dynamics of plant populations, especially when diverse seed predators (e.g., native and introduced) attack particular plant populations. Surprisingly, however, we know little concerning the potential hierarchy of spatial scales (e.g., region, population, patch) and coupled ecological correlates governing variation in the overall impact that native and introduced seed predators have on plant populations. We investigated several spatial scales and ecological correlates of pre-dispersal seed predation by invasive borer beetles in Chamaerops humilis (Arecaceae), a charismatic endemic palm of the Mediteranean basin. To this end, we considered 13 palm populations (115 palms) within four geographical regions of the Iberian Peninsula. The observed interregional differences in percentages of seed predation by invasive beetles were not significant likely because of considerable variation among populations within regions. Among population variation in seed predation was largely related to level of human impact. In general, levels of seed predation were several folds higher in human-altered populations than in natural populations. Within populations, seed predation declined significantly with the increase in amount of persisting fruit pulp, which acted as a barrier against seed predators. Our results revealed that a native species (a palm) is affected by the introduction of related species because of the concurrent introduction of seed predators that feed on both the introduced and native palms. We also show how the impact of invasive seed predators on plants can vary across a hierarchy of levels ranging from variation among individuals within local populations to large scale regional divergences.  相似文献   

3.
Seed predators that severely affect seed germination rates are well known for many plant species. Here, we hypothesised that due to differences in resource allocation within fruits, seed predation can negatively affect non-predated seeds in infested fruits when predation occurs during fruit maturation (a ‘top-down’ effect). We addressed this question using a system of bruchid beetles on Mimosa trees and we also investigated whether seed quality (nitrogen concentration) affects beetle body mass, which would have implications for adult fitness (‘bottom-up’ effect). To assess spatial variation, bottom-up and top-down effects were investigated in two plant populations. Nitrogen concentration was significantly higher in seeds from non-infested fruits than from infested fruits. This supports the hypothesis that resource allocation may differ between seeds from infested and non-infested fruits. Germination experiments showed that seeds from non-infested fruits germinated better than non-predated seeds from infested fruits. It was also confirmed that seed quality affected bruchid body mass. There was also evidence that more resources were taken from well-developed seeds. These results showed that seed predation can damage non-predated seeds.  相似文献   

4.
Ulf Sperens 《Oecologia》1997,109(3):368-373
Variation in fruit production and pre-dispersal seed predation by Argyresthia conjugella was studied in␣four populations of Sorbus aucuparia in northern Sweden.␣The number of infructescences, fruits per infructescence, consumed seeds and developed unattacked seeds per fruit were scored in marked trees from 1984 to 1990. The results showed that the number of fruits produced in each population determined the number of seed predators occurring in the host population, as the yearly number of seed predators was significantly and positively correlated with yearly number of fruits, in all but one population. The seed predators showed a delay in response to variation in number of fruits produced. This lag in response resulted in a large proportion of fruits being attacked and seeds consumed in a bad fruiting year that followed a good fruiting year, and vice versa. The proportion of fruits attacked and seeds consumed was largest in the population showing the greatest between-year variation in fruit production and lowest in the population showing the lowest between-year variation in fruit production. Furthermore, the individuals within the former population were synchronised, while they were not in the latter population. These results contradict one of the possible explanations of mast-seeding, where large synchronised between-year variation is supposed to reduce pre-dispersal seed predation. Instead, differences in attraction of the seed predator to differences in fruit crop size could explain the observed difference in seed predation between the two populations with opposite fruiting patterns. Within each population, irrespective of year, the proportion of fruits attacked and seeds consumed was independent of a tree's fruiting display. Therefore, trees with high fruit production, despite harbouring the largest number of seed predators, produced the largest number of developed seeds in absolute numbers, compared to trees that produced few fruits. Received: 25 February 1996 / Accepted: 30 November 1996  相似文献   

5.
Although prominent examples exist of non-native species causing substantial ecological harm, many have neutral or positive effects, including filling surrogate roles once performed by extinct native organisms. We tested the ecological roles of two non-native mammals as seed dispersers or seed predators in Guåhan, which, due to invasive brown tree snakes (Boiga irregularis), is devoid of native seed dispersers–birds and bats. We conducted feeding trials with captive rats (Rattus spp.), which are present but uncommon due to predation by snakes, and pigs (Sus scrofa), which are abundant. We examined if and how they interacted with common forest fruits. We then compared how any gut-passed or animal-handled seeds germinated compared to seeds left in whole fruit or depulped seeds. Rats and pigs interacted with most of the fruits and seeds (>80%) that they were fed. Of those, most seeds were destroyed—78% for rats and 90% for pigs, across both native and non-native plant species. Compared to seeds germinating within whole fruits, rats improved germination of the seeds that they handled without ingesting, while pigs diminished the germination of seeds that they handled. The small percentage of seeds (approximately 1.5% for rats and 5% for pigs) that survived gut passage germinated in higher proportions than those in whole fruits. Percentages of seed survival to germination are lower than found in similar studies with native avian frugivores. Our results indicate that pigs and rats have mixed effects on seeds, but are not suitable surrogates for native seed dispersers.  相似文献   

6.
Invasibility depends on the interaction of the introduced species with the abiotic and biotic factors of the recipient community. In particular, the biotic resistance posed by native herbivores has been claimed to be of great importance in controlling plant invasion. We investigated fruit and seed predation of two exotic Opuntia species within and between Mediterranean communities in order to determine how patterns of predation matched patterns of invasion. Predators were small mammals, presumably mice, which could consume more than 50% of the seeds produced. Predators could be equally effective in consuming fruit and single seeds. O. maxima fruits were slightly preferred to O. stricta fruits, but predators did not distinguish between seeds. Seed predation was more intense in invaded than in non-invaded communities. However, there was a high spatial variation in seed predation that did not always match patterns of invasion, suggesting that seed predation alone is not a good predictor of community invasibility to Opuntia. According to these results invasibility to Opuntia is limited in some (but not all) communities by native mice. Seed losses by predation were high for both species. However, we estimated that more than 75% of seeds dispersed by birds to non-invaded areas are not predated.  相似文献   

7.
In order to produce seeds, animal-pollinated plants must flower synchronously with and be attractive to their pollinators while avoiding antagonists. Here, we explore temporal and inter-individual patterns in pollination and pre-dispersal seed predation of Dianthus sylvestris by Hadena moths, within and among three sex morphs. We scored plants that started flowering at different periods in 2001 and 2003 and found that fruit set decreased and predation rates increased over one season, and most of the other season, granting a female reproductive advantage to early flowering plants, though, we found no morph-specific temporal patterns. Female plants set more fruits, and more of their fruits escaped predation in one year, but this did not grant them a reproductive advantage since they produce fewer flowers per plant than the other morphs. Instead, mixed plants showed a clear female reproductive advantage. We also examined predation types by Hadena and seed production in attacked and intact fruits of individually marked flowers. Though female Hadena moths laid eggs preferentially into perfect flowers, flower sexes suffered similar predation by itinerant caterpillars. Attacked fruits contained fewer and lighter seeds than un-attacked ones. We conclude that pre-dispersal seed predation by Hadena may select on flowering onset of this sexually polymorphic species.  相似文献   

8.
Lu M  Miller DR  Sun JH 《PloS one》2007,2(12):e1302

Background

Aside from the ecological impacts, invasive species fascinate ecologists because of the unique opportunities that invasives offer in the study of community ecology. Some hypotheses have been proposed to illustrate the mechanisms that allow exotics to become invasive. However, positive interactions between exotic and native insects are rarely utilized to explain invasiveness of pests.

Methodology/Principal Findings

Here, we present information on a recently formed association between a native and an exotic bark beetle on their shared host, Pinus tabuliformis, in China. In field examinations, we found that 35–40% of P. tabuliformis attacked by an exotic bark beetle, Dendroctonus valens, were also attacked by a native pine bark beetle, Hylastes parallelus. In the laboratory, we found that the antennal and walking responses of H. parallelus to host- and beetle-produced compounds were similar to those of the exotic D. valens in China. In addition, D. valens was attracted to volatiles produced by the native H. parallelus.

Conclusions/Significance

We report, for the first time, facilitation between an exotic and a native bark beetle seems to involve overlap in the use of host attractants and pheromones, which is cross-attraction. The concept of this interspecific facilitation could be explored as a novel invasive mechanism which helps explain invasiveness of not only exotic bark beetles but also other introduced pests in principle. The results reported here also have particularly important implications for risk assessments and management strategies for invasive species.  相似文献   

9.
Understanding the factors and mechanisms that affect the impacts of invasive species in invaded environments has been widely debated among researchers. However, few studies about invasive species have explored the effects of predation risks by native predators on exotic prey. Herein, the traditional invasive predator-native prey framework was reversed. We tested if tadpoles, of the worldwide invasive American Bullfrog Lithobates catesbeianus, were affected by the predation risk imposed by native predators. We used two different species of belostomatid predators and tested whether and how predation-induced phenotypic plasticity on L. catesbeianus reverberated in morphological, physiological, and ecosystem-level processes. Individuals of L. catesbeianus modified their morphological (tail muscle width), behavioral (activity and foraging), and physiological (growth and growth efficiency) traits in the presence of predation risk. Based on the observed morphological changes, our results suggest that prey may recognize predator-specific cues. In addition, we observed that L. catesbeianus' responses to predation risk can affect ecosystem-level properties, by inducing trophic cascades and reducing animal-mediated nutrient recycling rates. In summary, our study supports that exotic prey species who are subjected to native predators may display anti-predator responses, with implications for their development, as well as possible ecosystem-level effects.  相似文献   

10.
Oceanic islands have been colonized by numerous non-native and invasive plants and animals. An understanding of the degree to which introduced rats (Rattus spp.) may be spreading or destroying seeds of invasive plants can improve our knowledge of plant-animal interactions, and assist efforts to control invasive species. Feeding trials in which fruits and seeds were offered to wild-caught rats were used to assess the effects of the most common rat, the black rat (R. rattus), on 25 of the most problematic invasive plant species in the Hawaiian Islands. Rats ate pericarps (fruit tissues) and seeds of most species, and the impacts on these plants ranged from potential dispersal of small-seeded (≤1.5 mm length) species via gut passage (e.g., Clidemia hirta, Buddleia asiatica, Ficus microcarpa, Miconia calvescens, Rubus rosifolius) to predation where <15% of the seeds survived (e.g., Bischofia javanica, Casuarina equisetifolia, Prosopis pallida, Setaria palmifolia). Rats consumed proportionally more seed mass of the smaller fruits and seeds than the larger ones, but fruit and seed size did not predict seed survival following rat interactions. Although invasive rat control efforts focus on native species protection, non-native plant species, especially those with small seeds that may pass internally through rats, also deserve rat control in order to help limit the spread of such seeds. Black rats may be facilitating the spread of many of the most problematic invasive plants through frugivory and seed dispersal in Hawaii and in other ecosystems where rats and plants have been introduced.  相似文献   

11.
Invasive species may escape the enemies from their native range (‘enemy release’), but they can also acquire new enemies in their introduced range, which will affect the invasion process. For the invasive tree species Prunus serotina, seed predation by the native weevil Furcipus rectirostris has been reported in forests in its introduced range. In this study, we quantified how common the infestation of P. serotina seeds by F. rectirostris is in a 4000 km2 area in northern Belgium. Seeds were sampled on P. serotina trees in different habitats and in two years, i.e., with low and high P. serotina fruit production. Infestation was found throughout the study region, in 43 and 62% of the sampled trees in the two years of the study; the maximum infestation levels of infested seed samples were 50 and 69%. Overall, predation occurred in 4.4 and 10.8% of the sampled seeds. The level of infestation differed between habitats and years, and the number of fruits per raceme was inversely related to the infestation level. Notwithstanding the rather high incidence of F. rectirostris infestation in our study, the impact on P. serotina's invasiveness might remain low seeing the overall high seed production and dispersal capacity of the species.  相似文献   

12.
The emerald ash borer (EAB), Agrilus planipennis, is an invasive beetle that has killed millions of ash trees (Fraxinus spp.) since it was accidentally introduced to North America in the 1990s. Understanding how predators such as woodpeckers (Picidae) affect the population dynamics of EAB should enable us to more effectively manage the spread of this beetle, and toward this end we combined two experimental approaches to elucidate the relative importance of woodpecker predation on EAB populations. First, we examined wild populations of EAB in ash trees in New York, with each tree having a section screened to exclude woodpeckers. Second, we established experimental cohorts of EAB in ash trees in Maryland, and the cohorts on half of these trees were caged to exclude woodpeckers. The following spring these trees were debarked and the fates of the EAB larvae were determined. We found that trees from which woodpeckers were excluded consistently had significantly lower levels of predation, and that woodpecker predation comprised a greater source of mortality at sites with a more established wild infestation of EAB. Additionally, there was a considerable difference between New York and Maryland in the effect that woodpecker predation had on EAB population growth, suggesting that predation alone may not be a substantial factor in controlling EAB. In our experimental cohorts we also observed that trees from which woodpeckers were excluded had a significantly higher level of parasitism. The lower level of parasitism on EAB larvae found when exposed to woodpeckers has implications for EAB biological control, suggesting that it might be prudent to exclude woodpeckers from trees when attempting to establish parasitoid populations. Future studies may include utilizing EAB larval cohorts with a range of densities to explore the functional response of woodpeckers.  相似文献   

13.
In the dry forest of Santa Rosa National Park, Costa Rica, the understory shrub Jacquinia nervosa presents an inverse pattern of phenology that concentrates vegetative growth and reproduction during the dry season. In this study, we tested the "escape from herbivory" hypothesis as a potential explanation for the inverse phenological pattern of J. nervosa. We monitored leaf, flower and fruit production in 36 adult plants from October 2000 to August 2001. Leaves of six randomly selected branches per plant were marked and monitored every two weeks to measure the cumulative loss in leaf area. To analyze pre-dispersal seed predation we collected 15 fruits per plant and counted the total number of healthy and damaged seeds, as well as the number and type of seed predators found within the fruits. Leaf, flower, and fruit production occurred during the first part of the dry season (end of November to February). The cumulative herbivory levels were similar to those observed in other tropical dry forest tree species that concentrate leaf production during the wet season, and were concentrated on young leaves, which lost an average of 36.77 % of their area (SD = 34.35 %, N = 195). Chewing beetles of the genus Epicauta (Meloidae) were the most important herbivores. In mature leaves, most of the damage was caused by the beetle Coptocycla rufonotata (Chrysomelidae). Fruits took 4 months to develop during the dry season (January-March 2001) but continue increasing in size well into the first 3 months of the wet season (May-July). Average seed number per ripe fruit was 9 (SD = 5, N = 500). Seed predation in mature fruits was 42 % (SD = 47 %, N = 122). Most seeds were damaged by moth larvae of the family Tortricidae. Only 3 % of the flowers became fruits. This was influenced by the low level of flower synchrony (0.38+/-0.26, N = 36 plants), but neither leaf synchrony (0.88+/-0.06, N = 36 plants) nor plant size influenced fruit numbers. The significant damaged produced by insect herbivores in young leaves, fruits, and seeds, as well as the low reproductive index observed in J. nervosa, shows that the inverse leafing phenology of this species is not consistent with the "escape hypothesis" since J. nervosa was considerably attacked during the dry season. Considering the strong seasonality of the tropical dry forest and the heliophyte character of J. nervosa, it is more likely that this phenological strategy evolved in response to seasonal fluctuations in light availability, light quality, and daylength.  相似文献   

14.
Seed predators provide a valuable ecosystem service to farmers by reducing densities of weed seeds, and, in turn, densities of weed seedlings they must manage. The predominant invertebrate weed seed predator in Maine, USA, agroecosystems is the carabid beetle Harpalus rufipes DeGeer. Pitfall trapping has shown that H. rufipes prefers sites with vegetative cover to fallow sites, preference speculated to be driven by predator avoidance behavior. To test this hypothesis, ‘second-order predation assays’ were developed, in which live H. rufipes prey were presented to second-order predators. Field experiments were conducted to determine foremost if H. rufipes was subject to second-order predation, and secondly, whether (a) vegetative cover affords H. rufipes protection from second-order predators, and (b) high rates of second-order predation correspond with decreased invertebrate seed predation rates. Two 72-h experiments were conducted (mid August and September 2012) at crop and non-crop sites across a 28 ha diversified farm in Stillwater, ME, USA.Second-order predation was 2.8% per day. Based on images from motion-sensing cameras, H. rufipes’ predators included birds and small mammals. Neither a relationship between second-order predation and vegetative treatment, nor an empirical relationship between second-order predation and invertebrate seed predation were detected. However, a simulation model predicted that 2.8% per day second-order predation could increase the number of seeds entering the seedbank by more than 17% annually. Additionally, complex habitats supported higher rates of second-order predation than did simple habitats.  相似文献   

15.
The enemy release hypothesis states that invasive species are successful in their new environment because native species are not adapted to utilize the invasive. If true for predators, native predators should have lower feeding rates on the invasive species than a predator from the native range of the invasive species. We tested this hypothesis for zebra mussel (Dreissena polymorpha) by comparing handling time and predation rate on zebra mussels in the laboratory by two North American species (pumpkinseed, Lepomis gibbosus, and rusty crayfish, Orconectes rusticus) and one predator with a long evolutionary history with zebra mussels (round goby, Neogobius melanostomus). Handling time per mussel (7 mm shell length) ranged from 25 to >70 s for the three predator species. Feeding rates on attached zebra mussels were higher for round goby than the two native predators. Medium and large gobies consumed 50–67 zebra mussels attached to stones in 24 h, whereas pumpkinseed and rusty crayfish consumed <11. This supports the hypothesis that the rapid spread of zebra mussels in North America was facilitated by low predation rates from the existing native predators. At these predation rates and realistic goby abundance estimates, round goby could affect zebra mussel abundance in some lakes.  相似文献   

16.
Many plant species are threatened as a result of extinction of their large-bodied frugivores all over the world. Additionally, introduced herbivores and seed predators may cause severe pressure on early stages of plant recruitment. We studied the seed dispersal and seed predation of the keystone palm Euterpe edulis on a land-bridge island with a highly impoverished frugivore fauna and overabundant seed predators, and in a continuous Atlantic forest in Brazil. While the diversity of avian seed dispersers and predators was higher on the mainland, the abundance of seed dispersers was 4-fold higher on the island. Turdus flavipes was responsible for 72% and 96% of seeds removed in the island and mainland, respectively. However, the higher density of T. flaviceps on the island did not result in higher seed removal. In fact, seed removal rate was 1.7 times lower there than on the mainland, probably due to the aggressive behavior of the major seed disperser who defend palm fruits. Seed predation, on the other hand, was markedly higher on the island, where nearly 100% of seeds were preyed upon, but only 0.3% on the mainland. As a consequence of higher seed predation the population of E. edulis has few numbers of seedlings and saplings on the island. Therefore, management of the seed predator populations on the island is a key priority for recovering the natural population of this keystone palm and the frugivores that depend on its fruits.  相似文献   

17.
Seed predation is an important ecological and evolutionary force that directly affects the distribution of plant species. Copaifera langsdorffii is a tropical tree species with supra‐annual fruiting, which has its seeds predated by a specialist endogenous insect (Rynochenus brevicollis: Curculionidae) in the Brazilian savanna. Three hypotheses were addressed: (i) the predator satiation hypothesis, (ii) the resource concentration hypothesis and (iii) the larger seed predation hypothesis. A total of 112 individual C. langsdorffii were monitored monthly from January to August during four consecutive years (from 2008 to 2011) to determine the presence of fruits on each plant. All trees produced fruits in the year 2008, whereas none of them produced flowers or fruits in 2009 or 2010. Moreover, only 65 individuals (58%) marked in 2008 produced fruits in 2011. The number of fruits per plant was approximately 21% greater in 2008 than in 2011, while the percentage of seed predation was 76% greater in 2011, thereby supporting the predator satiation hypothesis. The percentage of seeds predated was not affected by the number of fruits per plant. Therefore, our data did not support the resource concentration hypothesis. Plants producing large seeds experienced more seed predation by R. brevicollis, supporting the larger seed predation hypothesis. In addition, we also observed a positive relationship between seed volume and adult R. brevicollis weight. This study demonstrates the importance of supra‐annual fruiting for increasing survivorship of C. langsdorffii seeds both at the individual and the population level, and suggests that seed predators select plants producing large seeds as a way of increasing the number of offspring.  相似文献   

18.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

19.
Invasive rodents are among the most ubiquitous and problematic species introduced to islands; more than 80% of the world’s island groups have been invaded. Introduced rats (black rat, Rattus rattus; Norway rat, R. norvegicus; Pacific rat, R. exulans) are well known as seed predators but are often overlooked as potential seed dispersers despite their common habit of transporting fruits and seeds prior to consumption. The relative likelihood of seed predation and dispersal by the black rat, which is the most common rat in Hawaiian forest, was tested with field and laboratory experiments. In the field, fruits of eight native and four non-native common woody plant species were arranged individually on the forest floor in four treatments that excluded vertebrates of different sizes. Eleven species had a portion (3–100%) of their fruits removed from vertebrate-accessible treatments, and automated cameras photographed only black rats removing fruit. In the laboratory, black rats were offered fruits of all 12 species to assess consumption and seed fate. Seeds of two species (non-native Clidemia hirta and native Kadua affinis) passed intact through the digestive tracts of rats. Most of the remaining larger-seeded species had their seeds chewed and destroyed, but for several of these, some partly damaged or undamaged seeds survived rat exposure. The combined field and laboratory findings indicate that many interactions between black rats and seeds of native and non-native plants may result in dispersal. Rats are likely to be affecting plant communities through both seed predation and dispersal.  相似文献   

20.
Jean-Yves Meyer 《Biotropica》1998,30(4):609-624
Miconia calvescens DC (Melastomataceae) is a dominant invasive species in the tropical oceanic island of Tahiti (French Polynesia, South Pacific Ocean), where it was introduced as an ornamental plant. Whereas this small tree is sparse in its native range of Central America, it has spread in Tahiti into a wide variety of habitats including native wet forests. The remarkable success of this invasion is due in great part to prolific reproduction: a mature tree can bear up to 220 inflorescences with an average of 1330 flowers/inflorescence, 208 fruits/infructescence and 195 seeds/fruit. Two and a half years of phenological observations in a highly invaded site indicated that three major peaks of flowering occur/year over brief periods: flower anthesis lasted a few days and pollen grain germination suggested a short stigmatic receptivity of only a few hours; no pollinators were observed foraging on flowers during our survey; the production of fruits containing viable seeds in bagged inflorescences showed that self-fertilization can occur; pollen-ovule ratio (log P/O = 2.68) suggested facultative xenogamy; bagged isolated flowers to test for autogamy and style cutting to learn whether apomixis occured or not were not conclusive. The flowering phenology and the breeding system of M. calvescens enable this plant to build up rapidly successful populations from even a single propagule on the island of Tahiti and on other sites of introduction. The vegetation structure of Polynesian native forests compared to Neotropical rain forests probably plays an important role in determining the reproductive success of M. calvescens and could provide a complementary explanation of the biological invasion processes in tropical oceanic islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号