首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individual deletions of acs and aceA genes in E. coli B (BL21) showed little difference in the metabolite accumulation patterns but deletion of the ackA gene alone or together with pta showed acetic acid gradually accumulated to 3.1 and 1.7 g/l, respectively, with a minimal extended lag in bacterial growth and a higher pyruvate formation. Single poxB deletion in E. coli B (BL21) or additional poxB deletion in the ackA-pta mutants did not change the acetate accumulation pattern. When the acetate production genes (ackA-pta-poxB) were deleted in E. coli B (BL21) acetate still accumulated. This may be an indication that perhaps acetate is not only a by-product of carbon metabolism; it is possible that acetate plays also a role in other cellular metabolite pathways. It is likely that there are alternative acetate production pathways.  相似文献   

2.
The biosynthesis of poly-3-hydroxybutyrate (P3HB), a biodegradable bio-plastic, requires acetyl-CoA as precursor and NADPH as cofactor. Escherichia coli has been used as a heterologous production model for P3HB, but metabolic pathway analysis shows a deficiency in maintaining high levels of NADPH and that the acetyl-CoA is mainly converted to acetic acid by native pathways. In this work the pool of NADPH was increased 1.7-fold in E. coli MG1655 through plasmid overexpression of the NADP+-dependent glyceraldehyde 3-phosphate dehydrogenase gene (gapN) from Streptococcus mutans (pTrcgapN). Additionally, by deleting the main acetate production pathway (ackA-pta), the acetic acid production was abolished, thus increasing the acetyl-CoA pool. The P3HB biosynthetic pathway was heterologously expressed in strain MG1655 Δack-pta/pTrcgapN, using an IPTG inducible vector with the P3HB operon from Azotobacter vinelandii (pPHB Av ). Cultures were performed in controlled fermentors using mineral medium with glucose as the carbon source. Accordingly, the mass yield of P3HB on glucose increased to 73 % of the maximum theoretical and was 30 % higher when compared to the progenitor strain (MG1655/pPHB Av ). In comparison with the wild type strain expressing pPHB Av , the specific accumulation of PHB (gPHB/gDCW) in MG1655 Δack-pta/pTrcgapN/pPHB Av increased twofold, indicating that as the availability of NADPH is raised and the production of acetate abolished, a P3HB intracellular accumulation of up to 84 % of the E. coli dry weight is attainable.  相似文献   

3.
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.  相似文献   

4.
We investigated the relationship between Escherichia coli flagellar expression and the regulation of acetyl phosphate synthesis and degradation. Using cells either wild type for acetyl phosphate metabolism or defective for phosphotransacetylase or acetate kinase, or both, we measured flagellar expression and the intracellular concentration of acetyl phosphate relative to growth phase and temperature. Under the conditions tested, we found that elevated levels of acetyl phosphate corresponded to inhibition of flagellar synthesis. To extend these observations, we measured the intracellular concentration of acetyl-CoA, the level of expression from the pta and ackA promoters, and the activities of phosphotransacetylase and acetate kinase derived from cell lysates. Relative to increasing culture density, acetyl-CoA levels and expression from both the pta and ackA promoters decreased. Relative to Increasing temperature, expression from the ackA promoter decreased and phosphotransacetylase activity increased. In contrast, temperature had little or no effect on either acetate kinase activity or expression from the pta promoter. We propose that cells regulate intracellular acetyl phosphate concentrations relative to growth phase and temperature by modulating the availability of acetyl-CoA, the expression of ackA, and the activity of phosphotransacetylase.  相似文献   

5.
Citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. We compared citramalate and acetate accumulation from glycerol using Escherichia coli strains expressing a modified citramalate synthase gene cimA from Methanococcus jannaschii. These studies revealed that gltA coding citrate synthase, leuC coding 3-isopropylmalate dehydratase, and acetate pathway genes play important roles in elevating citramalate and minimizing acetate formation. Controlled 1.0 L batch experiments confirmed that deletions in all three acetate-production genes (poxB, ackA, and pta) were necessary to reduce acetate formation to less than 1 g/L during citramalate production from 30 g/L glycerol. Fed-batch processes using MEC568/pZE12-cimA (gltA leuC ackA-pta poxB) generated over 31 g/L citramalate and less than 2 g/L acetate from either purified or crude glycerol at yields exceeding 0.50 g citramalate/g glycerol in 132 h. These results hold promise for the viable formation of citramalate from unrefined glycerol.  相似文献   

6.
In B. burgdorferi, the Rrp2-RpoN-RpoS signaling cascade is a distinctive system that coordinates the expression of virulence factors required for successful transition between its arthropod vector and mammalian hosts. Rrp2 (BB0763), an RpoN specific response regulator, is essential to activate this regulatory pathway. Previous investigations have attempted to identify the phosphate donor of Rrp2, including the cognate histidine kinase, Hk2 (BB0764), non-cognate histidine kinases such as Hk1, CheA1, and CheA2, and small molecular weight P-donors such as carbamoyl-phosphate and acetyl-phosphate (AcP). In a report by Xu et al., exogenous sodium acetate led to increased expression of RpoS and OspC and it was hypothesized this effect was due to increased levels of AcP via the enzyme AckA (BB0622). Genome analyses identified only one pathway that could generate AcP in B. burgdorferi: the acetate/mevalonate pathway that synthesizes the lipid, undecaprenyl phosphate (C55-P, lipid I), which is essential for cell wall biogenesis. To assess the role of AcP in Rrp2–dependent regulation of RpoS and OspC, we used a unique selection strategy to generate mutants that lacked ackA (bb0622: acetate to AcP) or pta (bb0589: AcP to acetyl-CoA). These mutants have an absolute requirement for mevalonate and demonstrate that ackA and pta are required for cell viability. When the ΔackA or Δpta mutant was exposed to conditions (i.e., increased temperature or cell density) that up-regulate the expression of RpoS and OspC, normal induction of those proteins was observed. In addition, adding 20mM acetate or 20mM benzoate to the growth media of B. burgdorferi strain B31 ΔackA induced the expression of RpoS and OspC. These data suggest that AcP (generated by AckA) is not directly involved in modulating the Rrp2-RpoN-RpoS regulatory pathway and that exogenous acetate or benzoate are triggering an acid stress response in B. burgdorferi.  相似文献   

7.
Escherichia coli FB-04(pta1), a recombinant l-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (l-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key l-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher l-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, l-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g?1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.  相似文献   

8.
Proteins of the glucose-starvation stimulon were identified by using two-dimensional gel electrophoresis and the gene–protein database of Escherichia coli. Members of this stimulon Included enzymes of the Embden–Meyerhof–Parnas (EMP) pathway, phosphotransacetylase (Pta) and acetate kinase (AckA) of the acetyl phosphate/acetate production pathway, and formate transacetytase. The synthesis of these enzymes was found to be Induced concomitantly with the decreased synthesis of enzymes of the Krebs cycle. Thus, the modulation in the synthesis of specific proteins during aerobic glucose starvation is, In part, similar to the response of cells shifted to anaerobiosis. These modulations suggest that the glucose-starved cell increases the relative flow of carbon through the Pta–AckA pathway. Indeed, the ability to synthesize acetyl phosphate, an intermediate of the pathway, appears to be indispensable for glucose-starved cells as pta and ptaackA double mutants were found to be impaired in their ability to survive glucose starvation. The survival characteristics of ackA mutants and the wild-type parent were indistinguishable. Moreover, the pta mutant failed to induce several proteins of the glucose-starvation stimulon.  相似文献   

9.
A native homoethanol pathway (pyruvate-to-acetyl-CoA-to-acetaldehyde-to-ethanol) was engineered in Escherichia coli B. The competing fermentation pathways were eliminated by chromosomal deletions of the genes encoding for fumarate reductase (frdABCD), lactate dehydrogenase (ldhA), acetate kinase (ackA), and pyruvate formate lyase (pflB). For redox balance and anaerobic cell growth, the pyruvate dehydrogenase complex (aceEF-lpd, a typical aerobically-expressed operon) was highly expressed anaerobically using a native anaerobic inducible promoter. The resulting strain SZ420 (ΔfrdBC ΔldhA ΔackA ΔfocA-pflB ΔpdhR::pflBp6-pflBrbs-aceEF-lpd) contains no foreign genes and/or promoters and efficiently ferments glucose and xylose into ethanol with a yield of 90% under anaerobic conditions.  相似文献   

10.

Background

Genome sequencing and bioinformatics are producing detailed lists of the molecular components contained in many prokaryotic organisms. From this 'parts catalogue' of a microbial cell, in silicorepresentations of integrated metabolic functions can be constructed and analyzed using flux balance analysis (FBA). FBA is particularly well-suited to study metabolic networks based on genomic, biochemical, and strain specific information.

Results

Herein, we have utilized FBA to interpret and analyze the metabolic capabilities of Escherichia coli. We have computationally mapped the metabolic capabilities of E. coliusing FBA and examined the optimal utilization of the E. colimetabolic pathways as a function of environmental variables. We have used an in silicoanalysis to identify seven gene products of central metabolism (glycolysis, pentose phosphate pathway, TCA cycle, electron transport system) essential for aerobic growth of E. colion glucose minimal media, and 15 gene products essential for anaerobic growth on glucose minimal media. The in silico tpi -, zwf, and pta -mutant strains were examined in more detail by mapping the capabilities of these in silicoisogenic strains.

Conclusions

We found that computational models of E. colimetabolism based on physicochemical constraints can be used to interpret mutant behavior. These in silicaresults lead to a further understanding of the complex genotype-phenotype relation. Supplementary information: 10.1186/1471-2105-1-1  相似文献   

11.
This work describes the production of (R,R)-2,3-butanediol in Escherichia coli using glycerol by metabolic engineering approaches. The introduction of a synthetic pathway converting pyruvate to (R,R)-2,3-butanediol into wild-type E. coli strain BW25113 led to the production of (R,R)-2,3-butanediol at a titer of 3.54?g/l and a yield of 0.131?g product/g glycerol (26.7?% of theoretical maximum) with acetate (around 3.00?g/l) as the dominant by-product. We therefore evaluated the impacts of deleting the genes ackA or/and poxB that are responsible for the major by-product, acetate. This increased production of (R,R)-2,3-butanediol to 9.54?g/l with a yield of 0.333?g product/g glycerol (68.0?% of theoretical maximum) in shake flask studies. The utilization of low-priced crude glycerol to produce value-added chemicals is of great significance to the economic viability of the biodiesel industry.  相似文献   

12.
Anaerobic homofermentative production of reduced products requires additional reducing power (NADH and/or NADPH) output from glucose catabolism. Previously, with an anaerobically expressed pyruvate dehydrogenase operon (aceEF-lpd), we doubled the reducing power output to four NADH per glucose (or 1.2 xylose) catabolized anaerobically, which satisfied the NADH requirement to establish a non-transgenic homoethanol pathway (1 glucose or 1.2 xylose ? 2 acetyl-CoA + 4 NADH ? 2 ethanol) in the engineered strain, Escherichia coli SZ420 (?frdBC ?ldhA ?ackA ?focA-pflB ?pdhR::pflBp6-pflBrbs-aceEF-lpd). In this study, E. coli SZ420 was further engineered for reduction of xylose to xylitol by (1) deleting the alcohol dehydrogenase gene (adhE) to divert NADH from the ethanol pathway; (2) deleting the glucose-specific PTS permease gene (ptsG) to eliminate catabolite repression and allow simultaneous uptake of glucose and xylose; (3) cloning the aldose reductase gene (xylI) of Candida boidinii to reduce xylose to xylitol. The resulting strain, E. coli AI05 (pAGI02), could in theory simultaneously uptake glucose and xylose, and utilize glucose as a source of reducing power for the reduction of xylose to xylitol, with an expected yield of four xylitol for each glucose consumed (YRPG = 4) under anaerobic conditions. In resting cell fermentation tests using glucose and xylose mixtures, E. coli AI05 (pAGI02) achieved an actual YRPG value of ~3.6, with xylitol as the major fermentation product and acetate as the by-product.  相似文献   

13.
In order to evaluate the pta(phosphotransacetylase) (–) mutant of Escherichia coli as a potential host of foreign lipase expression, the pta(–) mutant HB101 was constructed for the purpose of blocking the acetate synthetic pathway. Since acetate is known as a major inhibitory by-product of cell growth and foreign protein production, the growth characteristics and expression kinetics of the microbial lipase of the pta(–) E. coli mutant were investigated. The growth rate was considerably decreased (about 30%) when grown on M9 minimal media containing glucose, mannose or glycerol. Growth retardation was not observed when a gluconeogenic carbon source (acetate, malate or succinate) was utilized. It should be noted that the growth rate of the mutant was enhanced (about 20%) in modified M9 media including a gluconeogenic carbon source and NZ-amine. Growth inhibition of the pta(–) mutant by menadione, a representative redox-cycling drug, was more pronounced than that of the parental type of E. coli. Furthermore, the inhibition effect was more pronounced in glucose minimal medium, whereas the menadione sensitivity was not observed when a gluconeogenic carbon source was used as a sole carbon source or the lactate dehydrogenase gene from Lactobacillus casei was introduced in the pta(–) mutant. Therefore, it is suggested that the growth deficiency of the pta(–) mutant is closely related to the intracellular redox balance. When the pseudomonad lipase was expressed in the pta(–) mutant, a comparable expression rate and yield to the parental type strain was observed. High-cell-density culture if the mutant was easy to achieve even under the fluctuating conditions of residual glucose concentration.  相似文献   

14.
Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoAadhEnuoAndhptadld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation.  相似文献   

15.
16.
A metabolically engineered Escherichia coli has been constructed for the production of meso-2,3-butanediol (2,3-BD) under low oxygen condition. Genes responsible for 2,3-BD formation from pyruvate were assembled together to generate a high-copy plasmid pEnBD, in which each gene was transcribed with a constitutive promoter. To eliminate by-product formation under low oxygen condition, genes including ldhA, pta, adhE, and poxB which functioned for the mixed acid fermentation pathways were deleted in E. coli JM109. Compared with the wild type, the quadruple gene deletion mutant produced smaller amounts of acetate, succinate, and ethanol from glucose when cultivated in LB medium in shake flasks under low-aeration. When 2,3-BD producing pathway was introduced via pEnBD into the mutant, higher glucose consumption and faster 2,3-BD production rate compared with that of the wild-type control were observed under aerobic condition in shake flasks. In a 6-L fermentor supplied with only 3% dissolved oxygen (DO), the mutant harboring pEnBD converted glucose to 2,3-BD much faster than the control did. When DO supply was further lowered to 1% DO, the recombinant mutant grew much slower but produced 2,3-BD as a major fermentation metabolic product. In addition, the 2,3-BD yield showed an increase from 0.20 g BD/g glucose for the control to 0.43 g BD/g glucose for the mixed acid pathway deleted mutant grown in fermentors under 1% DO. These results reveals the potential of production of enantiomerically pure 2,3-BD isomer by recombinant E. coli under low oxygen condition.  相似文献   

17.
Superoxide dismutase (SOD)-deficient Escherichia coli was cultivated under the oxidative stress generated by photoexcited titanium dioxide. These cells showed higher growth rate and glucose consumption rate with accelerated accumulation of acetic acid in the medium, compared to the cells cultivated under the normal condition without the stress. Under the stress condition, the activity of acetate kinase and mRNA expressions of the enzymes for acetic acid production (pta and ackA) were approximately doubled, while the activity of citrate synthase and mRNA expressions of the enzymes in TCA cycle (gltA, acnA, icd, sucA, sucC, sdhA, fumA and mdh) were repressed by about half, as compared with those under the normal condition. These results suggest that the stress-suffering cells switch the metabolic pathway into a “suppressed aerobiosis”, possibly for lowering the generation of reactive oxygen species.  相似文献   

18.
Reducing the accumulation of acetate in Escherichia coli cultures can decrease carbon efflux as by-products and reduce acetate toxicity, and therefore enable high cell density cultivation. The concentration of intracellular amino acids can be decreased by genetic modifications of the corresponding amino acid transport systems. This can increase the levels of amino acids in the fermentation broth by decreasing the feedback inhibition on the corresponding biosynthetic pathways. Here, the effects of genetic manipulation of phosphate acetyltransferase (pta), high affinity tryptophan transporter (mtr) and aromatic amino acid exporter (yddG) on l-tryptophan production were investigated. The pta mutants accumulated less acetate and showed higher capacity for producing l-tryptophan as compared with the parental strain. The strains lacking mtr, or overexpressed yddG, or with the both mtr knockout and yddG overexpression, accumulated lower concentrations of intracellular tryptophan but higher production of extracellular l-tryptophan. In the l-tryptohan fed-batch fermentation of an E. coli derived from TRTH0709/pMEL03 having deletion of pta-mtr and overexpression of yddG in a 30-L fermentor, the maximum concentration of l-tryptophan (48.68 g/L) was obtained, which represented a 15.96 % increase as compared with the parental strain. Acetate accumulated to a concentration of 0.95 g/L. The intracellular concentration of l-tryptophan was low, and the glucose conversion rate reached a high level of 21.87 %, which was increased by 15.53 % as compared with the parent strain.  相似文献   

19.
During growth under conditions of glucose and oxygen excess, Staphylococcus aureus predominantly accumulates acetate in the culture medium, suggesting that the phosphotransacetylase-acetate kinase (Pta-AckA) pathway plays a crucial role in bacterial fitness. Previous studies demonstrated that these conditions also induce the S. aureus CidR regulon involved in the control of cell death. Interestingly, the CidR regulon is comprised of only two operons, both encoding pyruvate catabolic enzymes, suggesting an intimate relationship between pyruvate metabolism and cell death. To examine this relationship, we introduced ackA and pta mutations in S. aureus and tested their effects on bacterial growth, carbon and energy metabolism, cid expression, and cell death. Inactivation of the Pta-AckA pathway showed a drastic inhibitory effect on growth and caused accumulation of dead cells in both pta and ackA mutants. Surprisingly, inactivation of the Pta-AckA pathway did not lead to a decrease in the energy status of bacteria, as the intracellular concentrations of ATP, NAD+, and NADH were higher in the mutants. However, inactivation of this pathway increased the rate of glucose consumption, led to a metabolic block at the pyruvate node, and enhanced carbon flux through both glycolysis and the tricarboxylic acid (TCA) cycle. Intriguingly, disruption of the Pta-AckA pathway also induced the CidR regulon, suggesting that activation of alternative pyruvate catabolic pathways could be an important survival strategy for the mutants. Collectively, the results of this study demonstrate the indispensable role of the Pta-AckA pathway in S. aureus for maintaining energy and metabolic homeostasis during overflow metabolism.  相似文献   

20.
The platform chemical 2,3-butanediol (2,3-BDO) is produced by a number of microorganisms via a three-enzyme pathway starting from pyruvate. Here, we report production of 2,3-BDO via a shortened, two-enzyme pathway in Escherichia coli. A synthetic operon consisting of the acetolactate synthase (ALS) and acetoin reductase (AR) genes from Enterobacter under control of the T7 promoter was cloned in an episomal plasmid. E. coli transformed with this plasmid produced 2,3-BDO and the pathway intermediate acetoin, demonstrating that the shortened pathway was functional. To assemble a synthetic operon for inducer- and plasmid-free production of 2,3-BDO, ALS and AR genes were integrated in the E. coli genome under control of the constitutive ackA promoter. Shake flask-level cultivation led to accumulation of ~1 g/L acetoin and ~0.66 g/L 2,3-BDO in the medium. The novel biosynthetic route for 2,3-BDO biosynthesis described herein provides a simple and cost-effective approach for production of this important chemical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号