首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite extensive research for several decades, there remains a lack of understanding of the processes that determine the dynamics of natural plant communities. In this paper some current concepts in vegetation dynamics are reviewed and an attempt is made to provide a perspective of the way in which data for molecular diversity might be used to help in developing an understanding of population processes. It is proposed that data from assessments of general population diversity, and specific ecophysiological traits can be used to assess the potential for individual species to compete and substitute for each other in a community.Keywords: Natural plant communities, dynamics, molecular diversity, population diversity, ecophysiological traits.   相似文献   

2.
C. Biémont 《Genetica》1983,61(3):179-189
Brother-sister mating effects on offspring viability in natural populations of Drosophila melanogaster were analysed in relation to developmental homeostasis and enzymatic heterozygosity of the individuals constituting the sib pairs. High developmental homeostasis and high degree of heterozygosity are associated with a low inbreeding depression in offspring and, therefore, with a low frequency of major deleterious factors. These results are discussed in relation to maintenance of polymorphism in natural populations and the role of genetic load and founder events in speciation and adaptation. We conclude that an unusual environmental condition followed by a strong reduction in effective population size due to random elimination of individuals is a better candidate to speciation than an environmental shift leading to selection for homeostatic, highly heterozygous lethal-free individuals.  相似文献   

3.
The importance of genetic drift in shaping patterns of adaptive genetic variation in nature is poorly known. Genetic drift should drive partially recessive deleterious mutations to high frequency, and inter‐population crosses may therefore exhibit heterosis (increased fitness relative to intra‐population crosses). Low genetic diversity and greater genetic distance between populations should increase the magnitude of heterosis. Moreover, drift and selection should remove strongly deleterious recessive alleles from individual populations, resulting in reduced inbreeding depression. To estimate heterosis, we crossed 90 independent line pairs of Arabidopsis thaliana from 15 pairs of natural populations sampled across Fennoscandia and crossed an additional 41 line pairs from a subset of four of these populations to estimate inbreeding depression. We measured lifetime fitness of crosses relative to parents in a large outdoor common garden (8,448 plants in total) in central Sweden. To examine the effects of genetic diversity and genetic distance on heterosis, we genotyped parental lines for 869 SNPs. Overall, genetic variation within populations was low (median expected heterozygosity = 0.02), and genetic differentiation was high (median FST = 0.82). Crosses between 10 of 15 population pairs exhibited significant heterosis, with magnitudes of heterosis as high as 117%. We found no significant inbreeding depression, suggesting that the observed heterosis is due to fixation of mildly deleterious alleles within populations. Widespread and substantial heterosis indicates an important role for drift in shaping genetic variation, but there was no significant relationship between fitness of crosses relative to parents and genetic diversity or genetic distance between populations.  相似文献   

4.
Inbreeding and enemy infestation are common in plants and can synergistically reduce their performance. This inbreeding ×environment (I × E) interaction may be of particular importance for the success of plant invasions if introduced populations experience a release from attack by natural enemies relative to their native conspecifics. Here, we investigate whether inbreeding affects plant infestation damage, whether inbreeding depression in growth and reproduction is mitigated by enemy release, and whether this effect is more pronounced in invasive than native plant populations. We used the invader Silene latifolia and its natural enemies as a study system. We performed two generations of experimental out‐ and inbreeding within eight native (European) and eight invasive (North American) populations under controlled conditions using field‐collected seeds. Subsequently, we exposed the offspring to an enemy exclusion and inclusion treatment in a common garden in the species’ native range to assess the interactive effects of population origin (range), breeding treatment, and enemy treatment on infestation damage, growth, and reproduction. Inbreeding increased flower and leaf infestation damage in plants from both ranges, but had opposing effects on fruit damage in native versus invasive plants. Inbreeding significantly reduced plant fitness; whereby, inbreeding depression in fruit number was higher in enemy inclusions than exclusions. This effect was equally pronounced in populations from both distribution ranges. Moreover, the magnitude of inbreeding depression in fruit number was lower in invasive than native populations. These results support that inbreeding has the potential to reduce plant defenses in S. latifolia, which magnifies inbreeding depression in the presence of enemies. However, future studies are necessary to further explore whether enemy release in the invaded habitat has actually decreased inbreeding depression and thus facilitated the persistence of inbred founder populations and invasion success.  相似文献   

5.
6.
DNA markers allow us to study quantitative trait loci (QTL) - the genes that control adaptation and quantitative variation. Experiments can map the genes responsible for quantitative variation and address the evolutionary and ecological significance of this variation. Recent studies suggest that major genes segregate within and among natural populations. It is now feasible to study the genes that cause morphological variation, life history trade-offs, heterosis and speciation. These methods can determine the role of epistasis and genotype-by-environment interaction in maintaining genetic variation. QTL mapping is an important tool used to address evolutionary and ecological questions of long-standing interest.  相似文献   

7.
Jarne P  David P 《Heredity》2008,100(4):431-439
We review molecular methods for estimating selfing rates and inbreeding in populations. Two main approaches are available: the population structure approach (PSA) and progeny-array approach (PAA). The PSA approach relies on single-generation samples and produces estimates that integrate the inbreeding history over several generations, but is based on strong assumptions (for example, inbreeding equilibrium). The PSA has classically relied on single-locus inbreeding coefficients averaged over loci. Unfortunately PSA estimates are very sensitive to technical problems such as the occurrence of null alleles at one or more of the loci. Consequently inbreeding might be substantially overestimated, especially in outbred populations. However, the robustness of the PSA has recently been greatly improved by the development of multilocus methods free of such bias. The PAA, on the other hand, is based on the comparison between offspring and mother genotypes. As a consequence, PAA estimates do not reflect long-term inbreeding history but only recent mating events of the maternal individuals studied ('here and now' selfing). In addition to selfing rates, the PAA allows estimating other mating system parameters, including biparental inbreeding and the correlation of selfing among sibs. Although PAA estimates could also be biased by technical problems, incompatibilities between the mother's genotype and her offspring allow the identification and correction of such bias. For all methods, we provide guidelines on the required number of loci and sample sizes. We conclude that the PSA and PAA are equally robust, provided multilocus information is used. Although experimental constraints may make the PAA more demanding, especially in animals, the two methods provide complementary information, and can fruitfully be conducted together.  相似文献   

8.

Background

The current availability of genotypes for very large numbers of single nucleotide polymorphisms (SNPs) is leading to more accurate estimates of inbreeding coefficients and more detailed approaches for detecting inbreeding depression. In the present study, genome-wide information was used to detect inbreeding depression for two reproductive traits (total number of piglets born and number of piglets born alive) in an ancient strain of Iberian pigs (the Guadyerbas strain) that is currently under serious danger of extinction.

Methods

A total of 109 sows with phenotypic records were genotyped with the PorcineSNP60 BeadChip v1. Inbreeding depression was estimated using a bivariate animal model in which the inbreeding coefficient was included as a covariate. We used two different measures of genomic inbreeding to perform the analyses: inbreeding estimated on a SNP-by-SNP basis and inbreeding estimated from runs of homozygosity. We also performed the analyses using pedigree-based inbreeding.

Results

Significant inbreeding depression was detected for both traits using all three measures of inbreeding. Genome-wide information allowed us to identify one region on chromosome 13 associated with inbreeding depression. This region spans from 27 to 54 Mb and overlaps with a previously detected quantitative trait locus and includes the inter-alpha-trypsin inhibitor gene cluster that is involved with embryo implantation.

Conclusions

Our results highlight the value of high-density SNP genotyping for providing new insights on where genes causing inbreeding depression are located in the genome. Genomic measures of inbreeding obtained on a SNP-by-SNP basis or those based on the presence/absence of runs of homozygosity represent a suitable alternative to pedigree-based measures to detect inbreeding depression, and a useful tool for mapping studies. To our knowledge, this is the first study in domesticated animals using the SNP-by-SNP inbreeding coefficient to map specific regions within chromosomes associated with inbreeding depression.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0081-5) contains supplementary material, which is available to authorized users.  相似文献   

9.
Lynch M 《Genetical research》1999,74(3):255-264
Information on the genetic correlation between traits provides fundamental insight into the constraints on the evolutionary process. Estimates of such correlations are conventionally obtained by raising individuals of known relatedness in artificial environments. However, many species are not readily amenable to controlled breeding programmes, and considerable uncertainty exists over the extent to which estimates derived under benign laboratory conditions reflect the properties of populations in natural settings. Here, non-invasive methods that allow the estimation of genetic correlations from phenotypic measurements derived from individuals of unknown relatedness are introduced. Like the conventional approach, these methods demand large sample sizes in order to yield reasonably precise estimates, and special precautions need to be taken to eliminate bias from shared environmental effects. Provided the sample consists of at least 20% or so relatives, informative estimates of the genetic correlation are obtainable with sample sizes of several hundred individuals, particularly if supplemental information on relatedness is available from polymorphic molecular markers.  相似文献   

10.
Correlations between heterozygosity and components of fitness have been investigated in natural populations for over 20 years. Positive correlations between a trait of interest and heterozygosity (usually measured at allozyme loci) are generally recognized as evidence of inbreeding depression. More recently, molecular markers such as microsatellites have been employed for the same purpose. A typical study might use around five to ten markers. In this paper we use a panel of 71 microsatellite loci to: (1) Compare the efficacy of heterozygosity and a related microsatellite‐specific variable, mean d2, in detecting inbreeding depression; (2) Examine the statistical power of heterozygosity to detect such associations. We performed our analyses in a wild population of red deer (Cervus elaphus) in which inbreeding depression in juvenile traits had previously been detected using a panel of nine markers. We conclude that heterozygosity‐based measures outperform mean d2‐based measures, but that power to detect heterozygosity‐fitness associations is nonetheless low when ten or fewer markers are typed.  相似文献   

11.
12.
13.
Summary Almost all autotetraploids produce aneuploid progeny because of irregularities at meiosis. Aneuploid plants produce high frequencies of aneuploids. If it were not for selection against aneuploid gametes and sporophytes the amount of aneuploidy would increase every generation. Most experimental and theoretical studies on population genetics and heterosis in autotetraploids have neglected aneuploidy as a factor. To take aneuploidy into account experimentally requires the cytological identification of all chromosomes and to consider it theoretically requires a huge amount of computations. Consequently, microcomputer programs have been devised to show the effects of random mating and self-fertilization in autotetraploid populations. According to the model aneuploidy rapidly increases in randomly mated and self-fertilized autotetraploid populations until they achieve an equilibrium where the amount of aneuploidy introduced into the population is balanced by the amount of aneuploidy removed from the population by selection. The model suggests that self-fertilized populations have greater frequencies of aneuploid gametes and zygotes than do randomly mated populations and therefore aneuploidy may be a significant cause of the great inbreeding depressions found in autotetraploids.Contribution from the Missouri Agricultural Experiment Station. Journal Series No. 9998  相似文献   

14.
Estimates of inbreeding and relatedness are commonly calculated using molecular markers, although the accuracy of such estimates has been questioned. As a further complication, in many situations, such estimates are required in populations with reduced genetic diversity, which is likely to affect their accuracy. We investigated the correlation between microsatellite‐ and pedigree‐based coefficients of inbreeding and relatedness in laboratory populations of Drosophila melanogaster that had passed through bottlenecks to manipulate their genetic diversity. We also used simulations to predict expected correlations between marker‐ and pedigree‐based estimates and to investigate the influence of linkage between loci and null alleles. Our empirical data showed lower correlations between marker‐ and pedigree‐based estimates in our control (nonbottleneck) population than were predicted by our simulations or those found in similar studies. Correlations were weaker in bottleneck populations, confirming that extreme reductions in diversity can compromise the ability of molecular estimates to detect recent inbreeding events. However, this result was highly dependent on the strength of the bottleneck and we did not observe or predict any reduction in correlations in our population that went through a relatively severe bottleneck of N = 10 for one generation. Our results are therefore encouraging, as molecular estimates appeared robust to quite severe reductions in genetic diversity. It should also be remembered that pedigree‐based estimates may not capture realized identity‐by‐decent and that marker‐based estimates may actually be more useful in certain situations.  相似文献   

15.
Boakes EH  Wang J  Amos W 《Heredity》2007,98(3):172-182
We use regression models to investigate the effects of inbreeding in 119 zoo populations, encompassing 88 species of mammals, birds, reptiles and amphibians. Meta-analyses show that inbreeding depression for neonatal survival was significant across the 119 populations although the severity of inbreeding depression appears to vary among taxa. However, few predictors of a population's response to inbreeding are found reliable. The models are most likely to detect inbreeding depression in large populations, that is, in populations in which their statistical power is maximised. Purging was found to be significant in 14 populations and a significant trend of purging was found across populations. The change in inbreeding depression due to purging averaged across the 119 populations is <1%, however, suggesting that the fitness benefits of purging are rarely appreciable. The study re-emphasises the necessity to avoid inbreeding in captive breeding programmes and shows that purging cannot be relied upon to remove deleterious alleles from zoo populations.  相似文献   

16.
Dasmahapatra KK  Lacy RC  Amos W 《Heredity》2008,100(3):286-295
In the absence of detailed pedigree records, researchers have attempted to estimate individuals' levels of inbreeding using molecular markers, generally making use of heterozygosity measures based on microsatellite markers. Here we report and validate a method for estimating an individual's inbreeding coefficient, f, using amplified fragment length polymorphism (AFLP) markers. We use simulations to confirm that our measure scales appropriately with f when allele frequencies can be estimated from a subset of outbred individuals. We also present an approach for obtaining satisfactory estimates even in the absence of an independent set of known outbred individuals from which to estimate allele frequencies. We then test our method against empirical data from 179 wild and captive-bred old-field mice, Peromyscus polionotus subgriseus, comprising pedigree-based estimates of f, along with genetic data from 94 AFLP markers and 12 microsatellites. Inbreeding estimates based on both AFLP and microsatellite markers were found to correlate strongly with pedigree-based inbreeding coefficients. Owing to their ease of amplification in any species, AFLP markers may prove to be a valuable new tool for estimating f in natural populations and for examining correlations between heterozygosity and fitness.  相似文献   

17.
In many species, inbred individuals have reduced fitness. In plants with limited pollen and seed dispersal, post-pollination selection may reduce biparental inbreeding, but knowledge on the prevalence and importance of pollen competition or post-pollination selection after non-self pollination is scarce. We tested whether post-pollination selection favours less related pollen donors and reduces inbreeding in the dioecious plant Silene latifolia. We crossed 20 plants with pollen from a sibling and an unrelated male, and with a mix of both. We found significant inbreeding depression on vegetative growth, age at first flowering and total fitness (22% in males and 14% in females). In mixed pollinations, the unrelated male sired on average 57% of the offspring. The greater the paternity share of the unrelated sire, the larger the difference in relatedness of the two males to the female. The effect of genetic similarity on paternity is consistent with predictions for post-pollination selection, although paternity, at least in some crosses, may be affected by additional factors. Our data show that in plant systems with inbreeding depression, such as S. latifolia, pollen or embryo selection after multiple-donor pollination may indeed reduce inbreeding.  相似文献   

18.
Inbreeding depression may induce rapid extinction due to positive feedbacks between inbreeding depression and reduction of population size, which is often referred to as extinction vortex by inbreeding depression. The present analysis has demonstrated that the extinction vortex is likely to happen with realistic parameter values of genomic mutation rate of lethals or semilethals, equilibrium population size, intrinsic rate of natural increase, and rate of population decline caused by nongenetic extrinsic factors. Simulation models incorporating stochastic fluctuations of population size further indicated that extinction by inbreeding depression is facilitated by environmental fluctuations in population size. The results suggest that there is a positive interaction between genetic stochasticity and environmental stochasticity for extinction of populations by inbreeding depression. Received: May 10, 1999 / Accepted: November 5, 1999  相似文献   

19.
Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.  相似文献   

20.
Estimating genetic parameters in natural populations using the "animal model"   总被引:24,自引:0,他引:24  
Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号