首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Much of the Baltic Sea is currently classified as ‘affected by eutrophication’. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50–100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long‐term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112‐year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid‐1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long‐term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large‐scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem‐based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.  相似文献   

2.
This study follows up on a previous assessment of eutrophication status in the Baltic Sea, which covered the period 2001–2006. The updated assessment is based on new eutrophication targets, an improved eutrophication assessment tool (HEAT 3.0) as well as monitoring data for the period 2007–2011. Based on classifications of eutrophication status in all Baltic Sea sub-basins, we reveal that during the assessment period 2007–2011, the entire open Baltic Sea was affected by eutrophication. This is a different conclusion compared to earlier assessments and studies. Whilst the confidence of the assessment was high or moderate in most basins, there were indications of declining confidence in some assessment units and improved confidence in others. The problems in confidence were mainly related to scarcity of in situ monitoring data on chlorophyll-a and Secchi depth. The potential implications of our results, e.g. the expansion of the eutrophic zone and declining confidence in the classifications of eutrophication status, are discussed in relation to the existing Baltic Sea-wide nutrient management strategy as well as future assessment activities.  相似文献   

3.
A short review of effects of eutrophication on the phytobenthic communities in the Baltic Sea is given. Future monitoring aspects are briefly discussed. Local changes in phytobenthic communities outside point sources (e.g. industry outlets, enclosed bays receiving effluents from land runoff etc.) are easily detected and can be due to nutrient enrichment and/or toxic substances. In recent decades, changes have been reported from apparently unaffected areas. The disappearance of Fucus vesiculosus is the most conspicuous. The cause of events is similar in those areas: increases in epiphytes give increases in grazer populations. The thallus of algae is heavily grazed upon. The epiphytes shade their host and filamentous algae compete for space, disturbing recruitment and leading to a decrease in diversity. The rapid response of opportunistic filamentous algae on nutrient enrichment and changing herbivore pressure can easily be observed. Therefore, repeated surveillance in defined areas, which integrates the environmental response in both animal and plant communities, may be a fruitful approach for detecting large scale eutrophication of the Baltic Sea.  相似文献   

4.
A large-scale spatial (52 sampling stations in two areas; one previously affected by numerous sources of enrichment, and one pristine area used as a standard reference for coastal monitoring) and temporal (1972-1989) analysis of hydrography and benthic macrofauna in the archipelago waters of Åland, northern Baltic Sea, revealed significant changes of the ecosystem. The nutrient levels exceeded the criteria for eutrophicated waters at all stations, and the benthic macrofauna showed significant alterations in all parameters analyzed. In the area previously (1972-73) disturbed, reduced complexity in terms of diversity and evenness (i.e. functional responses) were recorded, whereas the changes in the previously undisturbed area are classified as structural. The main conclusions are that (a) no truly “natural” coastal reference areas can be found in the northern Baltic, and (b) the importance of the local effluents will add to the large-scale effects of eutrophication.  相似文献   

5.
Vegetated soft bottoms are under pressure due to a number of anthropogenic stressors, such as coastal exploitation and eutrophication. The ecological value of these biotopes has gained recognition through international conventions and the EU directives, which request methods for assessment of the environmental status of coastal areas. However, currently there is no appropriate method for assessing the status of shallow vegetated soft bottoms in the northern Baltic Sea. Therefore, we developed a macrophyte community index and tested its response in relation to important pressures (eutrophication and boating activity) and natural gradients (topographic openness, depth and salinity) on shallow bays in the northern Baltic Sea. The macrophyte index, and hence the proportion of sensitive to tolerant species, decreased with increasing phosphorus concentration, turbidity and level of boating activity, while the cumulative cover of macrophytes only showed a negative trend in response to increasing turbidity. Juvenile fish abundance was positively related to the index, indicating importance of sensitive macrophyte species for ecosystem functioning. As the index was tested in a wide geographic area, and showed a uniform response across natural gradients, it is a promising tool for assessment of environmental status that may be applied also in other vegetated soft-bottom areas.  相似文献   

6.
Rönnberg  Cecilia  Bonsdorff  Erik 《Hydrobiologia》2004,514(1-3):227-241
Eutrophication of coastal waters is a global phenomenon. the amounts of nutrients in the brackish water of the Baltic Sea have increased several times during the last century, with severe ecological effects on the biota. With the increasing environmental problems caused by nutrient over-enrichment, public awareness to the problem has also risen. The Baltic Sea cannot be regarded as a uniform water mass, and area-specific ecological responses can be described. Changes in and detection of eutrophication-related parameters are discussed in relation to a generalized conceptual eutrophication model for the Baltic Sea. The cascading trophic and ecosystem-responses to eutrophication in 9 different sub-regions of the Baltic Sea are illustrated and discussed. The results clearly show the need not only for a common remedy for the Baltic Sea, but primarily show the importance of regional ecological assessment in relation to basin-wide eutrophication.  相似文献   

7.
Long-term modeling of large-scale nutrient cycles in the entire Baltic Sea   总被引:1,自引:1,他引:0  
Management of eutrophication in marine ecosystems requires a good understanding of nutrient cycles at the appropriate spatial and temporal scales. Here, it is shown that the biogeochemical processes controlling large-scale eutrophication of the Baltic Sea can be described with a fairly aggregated model: simple as necessary Baltic long-term large scale (SANBALTS). This model simulates the dynamics of nitrogen, phosphorus, and silica driven by the external inputs, the major physical transports, and the internal biogeochemical fluxes within the seven major sub-basins. In a long-term hindcast (1970–2003), the model outputs reasonably matched observed concentrations and fluxes. The model is also tested in a scenario where nutrient inputs are reduced to levels that existed over 100 years ago. The simulated response of the Baltic Sea trophic state to this very large reduction is verified by a similar simulation made with a much more complex process-oriented model. Both models indicate that after initial, rather rapid changes the system goes into much slower evolution, and nutrient cycles would not become balanced even after 130 years. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

8.
Ojaveer H  Eero M 《PloS one》2011,6(4):e19231
Assessments of the environmental status of marine ecosystems are increasingly needed to inform management decisions and regulate human pressures to meet the objectives of environmental policies. This paper addresses some generic methodological challenges and related uncertainties involved in marine ecosystem assessment, using the central Baltic Sea as a case study. The objectives of good environmental status of the Baltic Sea are largely focusing on biodiversity, eutrophication and hazardous substances. In this paper, we conduct comparative evaluations of the status of these three segments, by applying different methodological approaches. Our analyses indicate that the assessment results are sensitive to a selection of indicators for ecological quality objectives that are affected by a broad spectrum of human activities and natural processes (biodiversity), less so for objectives that are influenced by a relatively narrow array of drivers (eutrophications, hazardous substances). The choice of indicator aggregation rule appeared to be of essential importance for assessment results for all three segments, whereas the hierarchical structure of indicators had only a minor influence. Trend-based assessment was shown to be a useful supplement to reference-based evaluation, being independent of the problems related to defining reference values and indicator aggregation methodologies. Results of this study will help in setting priorities for future efforts to improve environmental assessments in the Baltic Sea and elsewhere, and to ensure the transparency of the assessment procedure.  相似文献   

9.
This study reports the state and causes of eutrophication in the Portuguese continental Exclusive Economic Zone (EEZ), during a 14-year period (1995–2008), following the European Marine Strategy Framework Directive (MSFD) and using the trophic index TRIX for an integrated evaluation of indicators of eutrophication, and identifies areas where monitoring is needed to improve the eutrophication assessment. A non-continuous dataset for the 8 indicators specified by the MSFD for eutrophication assessment was used, including published and grey data. Eutrophication indicators were validated and thresholds reviewed, considering regional differences. The diatom:flagellate ratio was found a poor indicator of eutrophication as shifts in the diatom:flagellate ratio naturally occur associated with alternating water column turbulence and upwelling, and stratification, and therefore, could not be associated with anthropogenic nutrient enrichment effects. Assessment areas were, as a whole, classified as non-problem areas concerning eutrophication. Although nutrient enrichment was observed in coastal waters, related to river plume influence, nutrient enrichment direct and indirect effects were generally not detectable, possibly due to water column dispersion and mixing processes. Only occasionally, mild eutrophication was found in specific areas under the influence of major river (Douro, Vouga and Guadiana) plumes, associated with high nutrient and phytoplankton biomass levels and seagrass decline, which indicates the need for directed monitoring on eutrophication in those areas.  相似文献   

10.
Weckström  Kaarina  Korhola  Atte  Shemeikka  Petri 《Hydrobiologia》2002,477(1-3):115-127
Regular water-quality monitoring is yielding a great number of hydrographical and chemical data regarding the brackish Baltic Sea. However, present monitoring programmes often do not include shallow and sheltered near-shore areas, which are adjacent to human population and used for recreation purposes. We collected new near-shore water quality data from the southern coast of Finland that will allow the definition of the present state of these systems and may serve as reference data for possible future monitoring programmes. The data set comprises 45 small and shallow embayments with a mean surface area of 211 ha and a mean depth of 4.3 m. According to redundancy analysis (RDA), catchment land use explained 20.3% of the variance in the measured water chemistry. Agriculture had the strongest influence on the water quality of the study sites, capturing 13.1% of the variance. Nitrogen seemed to be strongly related to agriculture, whereas phosphorus was correlated with urban areas and industry. Higher than average nutrient concentrations regularly occurred at the mouths of large rivers, or close to human settlement, emphasising the significance of local sources to the nutrient concentrations of coastal waters. No increasing trend in nutrient or chlorophyll-a concentrations was observed from west to east in these shallow and sheltered nearshore areas. This contrasts with earlier results from pelagic samplings that report a marked influence of the River Neva and St. Petersburg on the nutrient status of the Gulf of Finland. Because these shallow embayments are strongly influenced by the local nutrient load, continued measures must be undertaken to reduce the nutrient load from land to prevent the continued deterioration and eutrophication of the nearshore, coastal waters.  相似文献   

11.
The Archipelago Sea in the northern Baltic has been subjected to large-scale cultural, economic and ecological changes, especially during the last three decades. Environmental threats originate from both basin-wide sources, affecting the whole Baltic Sea, and from local sources, such as nutrient loading from nearby river outflows, intense agriculture, fish farming, ships' traffic, boating, and man's physical impacts on the landscape and seascape. Both the Åland archipelago and the Archipelago Sea have been listed as hot-spots by HELCOM, Baltic Marine Environment Protection Commission, eutrophication being the main threat to the aquatic environment. In this study we review how biological communities have reacted to an increase in man-induced multisource stresses. Changes in plankton, benthic animals, macroalgal assemblages and fish communities have been documented in most parts of the Baltic Sea since the 1970s. What remains to be understood is the importance of these structural changes for the functioning of the Archipelago Sea ecosystem under various levels of human impact.  相似文献   

12.
Eutrophication (nutrient enrichment and subsequent processes) and its adverse ecosystem effects have been discussed as main issues over the last 20 years in international conferences and conventions for the protection of the marine environment such as the North Sea Conferences and the 1992 OSPAR Convention (OSPAR; which combined and updated the 1972 Oslo Convention on dumping waste at the sea and the 1974 Paris Convention on land-based sources of marine pollution). OSPAR committed itself to reduce phosphorus and nitrogen inputs (in the order of 50% compared with 1985) into the marine areas and ‘to combat eutrophication to achieve, by the year 2010, a healthy marine environment where eutrophication does not occur’. Within OSPAR, the Comprehensive Procedure (COMPP) has been developed and used to assess the eutrophication status of the OSPAR maritime area in an harmonised way. This is based on classification in terms of the following types of areas Non-Problem Areas (no effects), Potential Problem Areas (not enough data to assess effects) and Problem Areas (effects due to elevated nutrients and/or due to transboundary transport from adjacent areas). The COMPP consists of a set of harmonised assessment criteria with their area-specific assessment levels and an integrated area classification approach. The criteria cover all aspects of nutrient enrichment (nutrient inputs, concentrations and ratios) as well as possible direct effects (e.g. increased levels of nuisance and/or toxic phytoplankton species, shifts and/or losses of submerged aquatic vegetation) and indirect effects (e.g. oxygen deficiency, changes and/or death of benthos, death of fish, algal toxins). The COMPP also includes supporting environmental factors. It takes account of synergies and harmonisation with the EC Water Framework Directive, and has formed a major basis for the EC eutrophication guidance. Recently, additional components, such as total nitrogen, total phosphorus and transboundary transports have been included in the assessment of, e.g. the German Bight. The second application of the COMPP resulting in an update of the eutrophication status of the OSPAR maritime area will be finalised in 2008, and will include the agreed integrated set of Ecological Quality Objectives (EcoQOs) with respect to eutrophication. Guest editors: J. H. Andersen & D. J. Conley Eutrophication in Coastal Ecosystems: Selected papers from the Second International Symposium on Research and Management of Eutrophication in Coastal Ecosystems, 20–23 June 2006, Nyborg, Denmark  相似文献   

13.
Coastal benthic biodiversity is under increased pressure from climate change, eutrophication, hypoxia, and changes in salinity due to increase in river runoff. The Baltic Sea is a large brackish system characterized by steep environmental gradients that experiences all of the mentioned stressors. As such it provides an ideal model system for studying the impact of on‐going and future climate change on biodiversity and function of benthic ecosystems. Meiofauna (animals < 1 mm) are abundant in sediment and are still largely unexplored even though they are known to regulate organic matter degradation and nutrient cycling. In this study, benthic meiofaunal community structure was analysed along a salinity gradient in the Baltic Sea proper using high‐throughput sequencing. Our results demonstrate that areas with higher salinity have a higher biodiversity, and salinity is probably the main driver influencing meiofauna diversity and community composition. Furthermore, in the more diverse and saline environments a larger amount of nematode genera classified as predators prevailed, and meiofauna‐macrofauna associations were more prominent. These findings show that in the Baltic Sea, a decrease in salinity resulting from accelerated climate change will probably lead to decreased benthic biodiversity, and cause profound changes in benthic communities, with potential consequences for ecosystem stability, functions and services.  相似文献   

14.
Nitrogen fixation was investigated by means of the acetylene reduction method during the development of a water bloom of Nodularia in coastal waters of the Baltic Sea west of the island of Hiddensee and in backwaters showing different degrees of eutrophication. Depending on plankton density, the values found varied greatly. The maximum of nitrogen fixation values found in extremely dense water blooms under special conditions (Baltic Sea, 2250 μg N2/l · h; Kleiner Jasmunder Bodden, 374 μg N2/l · h) are up to 103 times higher than from other parts of the Baltic Sea or from inland waters. The average nitrogenase activity determined for coastal water populations of the Baltic Sea is 2.15 pg N2/heterocyst · h and that of the inmost backwaters 0.77 pg N2/heterocyst · h. The relationship between N2-fixation and nutrient content in water is discussed.  相似文献   

15.
Growth of periphyton was studied in the Archipelago Sea (Finland) during summer 1994 as a part of the annual monitoring control of fish farms. Experimental growth plates (Whatman GF/C filters) were incubated (two weeks) at 213 sites in different parts of the Archipelago Sea and in the coastal area north of the Archipelago Sea. At each site incubations were repeated two or three times during the summer (July 4- -September 1). The growth of periphyton was measured as the amount of chlorophyll a (mg m-2) extracted from the incubation plates. The growth varied significantly among different parts of the study area. The strongest growth was observed in the inner archipelago and in areas with high fish production and relatively slow water exchange. In the outer archipelago, rapid water exchange ensured good mixing of nutrients from fish farms and other sources into relatively large water volumes. The local impacts of nutrient loading thus remained too low to be detected by measuring nutrient concentrations or periphyton growth. Periphyton growth was positively correlated with concentrations of total nitrogen, total phosphorus and chlorophyll a in the productivity layer (approximately 2 × Secchi depth). A significant inverse correlation was also shown between periphyton growth and Secchi depth. Archipelago areas with different levels of eutrophication could satisfactorily be distinguished in this study. The results were consequent with previous classifications of the eutrophication levels in the Archipelago Sea. Periphyton studies thus are a useful addition to conventional monitoring programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Marine ecosystems are undergoing substantial changes due to human-induced pressures. Analysis of long-term data series is a valuable tool for understanding naturally and anthropogenically induced changes in plankton communities. In the present study, seasonal monitoring data were collected in three sub-basins of the northern Baltic Sea between 1979 and 2011 and statistically analysed for trends and interactions between surface water hydrography, inorganic nutrient concentrations and phyto- and zooplankton community composition. The most conspicuous hydrographic change was a significant increase in late summer surface water temperatures over the study period. In addition, salinity decreased and dissolved inorganic nutrient concentrations increased in some basins. Based on redundancy analysis (RDA), warming was the key environmental factor explaining the observed changes in plankton communities: the general increase in total phytoplankton biomass, Cyanophyceae, Prymnesiophyceae and Chrysophyceae, and decrease in Cryptophyceae throughout the study area, as well as increase in rotifers and decrease in total zooplankton, cladoceran and copepod abundances in some basins. We conclude that the plankton communities in the Baltic Sea have shifted towards a food web structure with smaller sized organisms, leading to decreased energy available for grazing zooplankton and planktivorous fish. The shift is most probably due to complex interactions between warming, eutrophication and increased top-down pressure due to overexploitation of resources, and the resulting trophic cascades.  相似文献   

17.
The Baltic Sea is known for its ecological problems due to eutrophication caused by high nutrient input via nitrogen fixation and rivers, which deliver up to 70% of nitrogen in the form of dissolved organic nitrogen (DON) compounds. We therefore measured organic nitrogen uptake rates using self produced 15N labeled allochthonous (derived from Brassica napus and Phragmites sp.) and autochthonous (derived from Skeletonema costatum) DON at twelve stations along a salinity gradient (34 to 2) from the North Sea to the Baltic Sea in August/September 2009. Both labeled DON sources were exploited by the size fractions 0.2–1.6 μm (bacteria size fraction) and >1.6 μm (phytoplankton size fraction). Higher DON uptake rates were measured in the Baltic Sea compared to the North Sea, with rates of up to 1213 nmol N l?1 h?1. The autochthonous DON was the dominant nitrogen form used by the phytoplankton size fraction, whereas the heterotrophic bacteria size fraction preferred the allochthonous DON. We detected a moderate shift from >1.6 μm plankton dominated DON uptake in the North Sea and central Baltic Sea towards a 0.2–1.6 μm dominated DON uptake in the Bothnian Bay and a weak positive relationship between DON concentrations and uptake. These findings indicate that DON is an important component of plankton nutrition and can fuel primary production. It may therefore also contribute substantially to eutrophication in the Baltic Sea especially when inorganic nitrogen sources are depleted.  相似文献   

18.

Purpose

In life cycle assessment (LCA), eutrophication is commonly assessed using site-generic characterisation factors, despite being a site-dependent environmental impact. The purpose of this study was to improve the environmental relevance of marine eutrophication impact assessment in LCA, particularly regarding the impact assessment of waterborne nutrient emissions from Swedish agriculture.

Methods

Characterisation factors were derived using site-dependent data on nutrient transport for all agricultural soils in Sweden, divided into 968 catchment areas, and considering the Baltic Sea, the receiving marine compartment, as both nitrogen- and phosphorus-limited. These new characterisation factors were then applied to waterborne nutrient emissions from typical grass ley and spring barley cultivation in all catchments.

Results and discussion

The site-dependent marine eutrophication characterisation factors obtained for nutrient leaching from soils varied between 0.056 and 0.986 kg Neq/kg N and between 0 and 7.23 kg Neq/kg P among sites in Sweden. On applying the new characterisation factors to spring barley and grass ley cultivation at different sites in Sweden, the total marine eutrophication impact from waterborne nutrient emissions for these crops varied by up to two orders of magnitude between sites. This variation shows that site plays an important role in determining the actual impact of an emission, which means that site-dependent impact assessment could provide valuable information to life cycle assessments and increase the relevance of LCA as a tool for assessment of product-related eutrophication impacts.

Conclusions

Characterisation factors for marine eutrophication impact assessment at high spatial resolution, considering both the site-dependent fate of eutrophying compounds and specific nutrient limitations in the recipient waterbody, were developed for waterborne nutrient emissions from agriculture in Sweden. Application of the characterisation factors revealed variations in calculated impacts between sites in Sweden, highlighting the importance of spatial differentiation of characterisation modelling within the scale of the impact.
  相似文献   

19.
茅尾海营养状况及其来源研究   总被引:2,自引:0,他引:2  
根据2008年茅尾海海域水质调查结果,采用营养指数法、营养状态质量指数法、有机污染指数法对海湾营养状况进行了评价,并结合2007年入海污染源调查结果,探讨了茅尾海的营养盐来源。结果表明:茅尾海受无机氮污染较重,海域处于呈富营养状态,有机污染程度属2级,表明开始受到有机污染。营养盐高值区集中在北部海域和东部海域。钦江、茅岭江等入海河流携带入海的营养盐是海域营养的主要来源,占入海污染物总量的79%以上,其次来自钦州湾外海的混合排污口。2001~2007年茅尾海DIN、DIP年均浓度分别与入海河流氮、磷营养盐入海负荷呈显著正相关,两者的相关系数分别为0.873和0.824。  相似文献   

20.
Granqvist  Mikaela  Mattila  Johanna 《Hydrobiologia》2004,514(1-3):93-101
Hydrobiologia - Nursery areas of perch, Perca fluviatilis L., in the shallow coastal areas of the Baltic Sea are affected by increased water turbidity due to the ongoing eutrophication and other...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号