首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Griffin JM  Turner MG 《Oecologia》2012,170(2):551-565
Outbreaks of Dendroctonus beetles are causing extensive mortality in conifer forests throughout North America. However, nitrogen (N) cycling impacts among forest types are not well known. We quantified beetle-induced changes in forest structure, soil temperature, and N cycling in Douglas-fir (Pseudotsuga menziesii) forests of Greater Yellowstone (WY, USA), and compared them to published lodgepole pine (Pinus contorta var. latifolia) data. Five undisturbed stands were compared to five beetle-killed stands (4–5 years post-outbreak). We hypothesized greater N cycling responses in Douglas-fir due to higher overall N stocks. Undisturbed Douglas-fir stands had greater litter N pools, soil N, and net N mineralization than lodgepole pine. Several responses to disturbance were similar between forest types, including a pulse of N-enriched litter, doubling of soil N availability, 30–50 % increase in understory cover, and 20 % increase in foliar N concentration of unattacked trees. However, the response of some ecosystem properties notably varied by host forest type. Soil temperature was unaffected in Douglas-fir, but lowered in lodgepole pine. Fresh foliar %N was uncorrelated with net N mineralization in Douglas-fir, but positively correlated in lodgepole pine. Though soil ammonium and nitrate, net N mineralization, and net nitrification all doubled, they remained low in both forest types (<6 μg N g soil?1 NH4 +or NO3 ?; <25 μg N g soil?1 year?1 net N mineralization; <8 μg N g soil?1 year?1 net nitrification). Results suggest that beetle disturbance affected litter and soil N cycling similarly in each forest type, despite substantial differences in pre-disturbance biogeochemistry. In contrast, soil temperature and soil N–foliar N linkages differed between host forest types. This result suggests that disturbance type may be a better predictor of litter and soil N responses than forest type due to similar disturbance mechanisms and disturbance legacies across both host–beetle systems.  相似文献   

2.
The foliar stable N isotope ratio (δ15N) can provide integrated information on ecosystem N cycling. Here we present the δ15N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ15N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ15N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more 15N enriched. Our results show that foliar δ15N ranged from ?5.1 to 1.3 ‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 ? had low δ15N (?11.4 to ?3.2 ‰) and plant NO3 ? uptake could not explain the negative foliar δ15N values (NH4 + was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 + uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 +. The variation in foliar δ15N among species (by about 6 ‰) was smaller than in many N-limited ecosystems, which is typically about or over 10 ‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ15N and the enrichment factor (foliar δ15N minus soil δ15N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ15N between primary and secondary forests.  相似文献   

3.
Amino acid uptake in deciduous and coniferous taiga ecosystems   总被引:2,自引:0,他引:2  
We measured in situ uptake of amino acids and ammonium across deciduous and coniferous taiga forest ecosystems in interior Alaska to examine the idea that late successional (coniferous) forests rely more heavily on dissolved organic nitrogen (DON), than do early successional (deciduous) ecosystems. We traced 15N-NH4+ and 13C-15N-amino acids from the soil solution into plant roots and soil pools over a 24 h period in stands of early successional willow and late successional black spruce. Late successional soils have much higher concentrations of amino acid in soil solution and a greater ratio of DON to dissolved inorganic N (DIN) (ammonium plus nitrate) than do early successional soils. Moreover, late successional coniferous forests exhibit higher rates of soil proteolytic activity, but lower rates of inorganic N turnover. Differences in ammonium and amino acid uptake by early successional willow stands were insignificant. By contrast, the in situ uptake of amino acid by late successional black spruce forests were approximately 4-fold greater than ammonium uptake. The relative difference in uptake of ammonium and amino acids in these forests was approximately proportional to the relative difference of these N forms in the soil solution. Thus, we suggest that differences in uptake of different N forms across succession in these boreal forests largely reflect edaphic variation in available soil N (composition), rather than any apparent physiological specialization to absorb particular forms of N. These finding are relevant to our understanding of how taiga ecosystems may respond to increases in temperature, fire frequency, N deposition, and other potential consequences of global change.  相似文献   

4.
Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these N-rich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p < 0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p < 0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.  相似文献   

5.
The response of decomposition of litter for the dominant tree species in disturbed (pine), rehabilitated (pine and broadleaf mixed) and mature (monsoon evergreen broadleaf) forests in subtropical China to simulated N deposition was studied to address the following hypothesis: (1) litter decomposition is faster in mature forest (high soil N availability) than in rehabilitated/disturbed forests (low soil N availability); (2) litter decomposition is stimulated by N addition in rehabilitated and disturbed forests due to their low soil N availability; (3) N addition has little effect on litter decomposition in mature forest due to its high soil N availability. The litterbag method (a total of 2880 litterbags) and N treatments: Control-no N addition, Low-N: −5 g N m−2 y−1, Medium-N: −10 g N m−2 y−1, and High-N: −15 g N m−2 y−1, were employed to evaluate decomposition. Results indicated that mature forest, which has likely been N saturated due to both long-term high N deposition in the region and the age of the ecosystem, had the highest litter decomposition rate, and exhibited no significant positive and even some negative response to nitrogen additions. However, both disturbed and rehabilitated forests, which are still N limited due to previous land use history, exhibited slower litter decomposition rates with significant positive effects from nitrogen additions. These results suggest that litter decomposition and its responses to N addition in subtropical forests of China vary depending on the nitrogen status of the ecosystem.  相似文献   

6.
Despite long-term enhanced nitrogen (N) inputs, forests can retain considerable amounts of N. While rates of N inputs via throughfall and N leaching are increased in coniferous stands relative to deciduous stands at comparable sites, N leaching below coniferous stands is disproportionally enhanced relative to the N input. A better understanding of factors affecting N retention is needed to assess the impact of changing N deposition on N cycling and N loss of forests. Therefore, gross N transformation pathways were quantified in undisturbed well-drained sandy soils of adjacent equal-aged deciduous (pedunculate oak (Quercus robur L.)) and coniferous (Scots pine (Pinus sylvestris L.)) planted forest stands located in a region with high N deposition (north Belgium). In situ inorganic 15N labelling of the mineral topsoil (0–10?cm) combined with numerical data analysis demonstrated that (i) all gross N transformations differed significantly (p?<?0.05) between the two forest soils, (ii) gross N mineralization in the pine soil was less than half the rate in the oak soil, (iii) meaningful N immobilization was only observed for ammonium, (iv) nitrate production via oxidation of organic N occurred three times faster in the pine soil while ammonium oxidation was similar in both soils, and (v) dissimilatory nitrate reduction to ammonium was detected in both soils but was higher in the oak soil. We conclude that the higher gross nitrification (including oxidation of organic N) in the pine soil compared to the oak soil, combined with negligible nitrate immobilization, is in line with the observed higher nitrate leaching under the pine forest.  相似文献   

7.
Foliar nitrogen isotope (δ15N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ15N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ15N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ15N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ15N, and mycorrhizae on foliar δ15N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ15N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ15N. There was no correlation between foliar δ13C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ15N in several dominant species occurring in temperate forest ecosystems.  相似文献   

8.
Nitrogen cycling in forest soils across climate gradients in Eastern China   总被引:9,自引:0,他引:9  
A 15N tracing study was carried out to investigate the potential gross nitrogen (N) dynamics in thirteen forest soils in Eastern China ranging from temperate to tropical zones (five coniferous forests, six deciduous broad-leaf forests, one temperate mixed forest, one evergreen broad-leaf forests ecosystems), and to identify the major controlling factors on N cycling in these forest ecosystems. The soil pH ranged from 4.3 to 7.9 and soil organic carbon (SOC) ranged from 6.6 g?kg?1 to 83.0 g?kg?1. The potential gross N transformation rates were quantified by 15N tracing studies where either the ammonium or nitrate pools were 15N labeled in parallel treatments. Gross mineralization rates ranged from 0.915 μg N g?1 soil day?1 to 2.718 μg N g?1 soil day?1 in the studied forest soils. The average contribution of labile organic-N (M Nlab ) to total gross mineralization (M Nrec +M Nlab ) was 86% (58% to 99%), indicating that turnover of labile organic N plays a dominant role in the studied forest ecosystems. The gross mineralization rates in coniferous forest soils were significantly lower (ranging between 0.915 and 1.228 μg N g?1 soil day?1) compared to broad-leaf forest soils (ranging from 1.621 to 2.718 μg N g?1 soil day?1) (p?<?0.01). Thus, the dominant vegetation may play an important role in regulating soil N mineralization. Nitrate production (nitrification) occurred via two pathways, oxidation of NH 4 + and organic N the forest soils. Correlations with soil pH indicated that this is a key factor controlling the oxidation of NH 4 + and organic N in theses forest ecosystems. NH 4 + oxidation decreased with a decline in pH while organic N oxidation increased. The climatic conditions (e.g. moisture status) at the various sites governed the NO 3 ? -N consumption processes (dissimilatory NO 3 ? reduction to NH 4 + (DNRA) or immobilization of NO 3 ? ). Total NO 3 ? consumption and the proportion of total NO 3 ? consumption to total NO 3 ? production decreased with an increase in the drought index of ecosystems, showing that strong interactions appear to exist between climatic condition (e.g. the drought index), N mineralization and the rate of DNRA. Interactions between vegetation, climatic conditions govern internal N cycling in these forests soils.  相似文献   

9.

Background

Natural forest succession often affects soil physical and chemical properties. Selected physical and chemical soil properties were studied in an old-growth forest across a forest successional series in Dinghushan Nature Reserve, Southern China.

Methodology/Principal Findings

The aim was to assess the effects of forest succession change on soil properties. Soil samples (0–20 cm depth) were collected from three forest types at different succession stages, namely pine (Pinus massoniana) forest (PMF), mixed pine and broadleaf forest (PBMF) and monsoon evergreen broadleaf forest (MEBF), representing early, middle and advanced successional stages respectively. The soil samples were analyzed for soil water storage (SWS), soil organic matter (SOM), soil microbial biomass carbon (SMBC), pH, NH4 +-N, available potassium (K), available phosphorus (P) and microelements (available copper (Cu), available zinc (Zn), available iron (Fe) and available boron (B)) between 1999 and 2009. The results showed that SWS, SOM, SMBC, Cu, Zn, Fe and B concentrations were higher in the advanced successional stage (MEBF stage). Conversely, P and pH were lower in the MEBF but higher in the PMF (early successional stage). pH, NH4 +-N, P and K declined while SOM, Zn, Cu, Fe and B increased with increasing forest age. Soil pH was lower than 4.5 in the three forest types, indicating that the surface soil was acidic, a stable trend in Dinghushan.

Conclusion/Significance

These findings demonstrated significant impacts of natural succession in an old-growth forest on the surface soil nutrient properties and organic matter. Changes in soil properties along the forest succession gradient may be a useful index for evaluating the successional stages of the subtropical forests. We caution that our inferences are drawn from a pseudo-replicated chronosequence, as true replicates were difficult to find. Further studies are needed to draw rigorous conclusions regarding on nutrient dynamics in different successional stages of forest.  相似文献   

10.
Rapid immobilization of inorganic nitrogen (N) in soil contributes to ecosystem N accumulation, even in old-growth and chronically-fertilized forests once thought to have poor N retention capacity. In old-growth conifer and hardwood stands in Pennsylvania, we tested the hypotheses that biotic and abiotic N immobilization are regulated by N form and forest type. We added 15NH4 +, 15NO2 ?, and 15NO3 ? to sterile (γ-irradiated) and live organic-horizon soil and define N immobilization as the mass of added 15N remaining in soil following extractions conducted 15 min, 24 h, and 21 days later. Immobilization of NO2 ? (19–25% of added N) occurred in sterile soils within 15 min and was little changed thereafter. Tracer NO3 ? immobilization was not observed, although soils had been pretreated (refrigerated) so as to quantify the lower limit of immobilization potential. Immobilization of NH4 + (27%) occurred in live conifer soils by 21 days but not in other treatments. In 21-day incubations, tracer N immobilization was greater in NO3 ?-poor and humic-rich soils. Immobilization was greater in sterile than in live soil, perhaps owing to artifacts of sterilization. Conifer stands exhibited more massive O-horizons, so NO2 ? immobilization per unit area was greater in conifer (1.46 mg N m?2) than hardwood (0.43 mg N m?2) stands, possibly accounting for lower N leaching from conifer forests. Areal immobilization rates appear to be fast enough to retain all N transformed to NO2 ?, so NO2 ? production may be a limiting step in soil N retention in old-growth ecosystems.  相似文献   

11.
We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca(15NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 102–106?cfu?g?1 plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and 15N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions.  相似文献   

12.
Elevated anthropogenic nitrogen (N) deposition is suggested to affect ecosystem phosphorus (P) cycling through altered biotic P demand and soil acidification. To date, however, there has been little information on how long-term N deposition regulates P fluxes in tropical forests, where P is often depleted. To address this question, we conducted a long-term N addition experiment in a mature tropical forest in southern China, using the following N treatments: 0, 50, 100, and 150 kg N ha?1 year?1. We hypothesized that (i) tropical forest ecosystems have conservative P cycling with low P output, and (ii) long-term N addition decreases total dissolved phosphorus (TDP) leaching losses due to reduced litter decomposition rates and stimulated P sorption deriving from accelerated soil acidification. As hypothesized, we demonstrated a closed P cycling with low leaching outputs in our forest. Under experimental N addition, TDP flux in throughfall was significantly reduced, suggesting that N addition may result in a less internal P recycling. Contrary to our hypothesis, N addition did not decrease TDP leaching, despite reduced litter decomposition and accelerated soil acidification. We find that N addition might have negative impacts on biological P uptake without affecting TDP leaching, and that the amount of TDP leaching from soil could be lower than a minimum concentration for TDP retention. Overall, we conclude that long-term N deposition does not necessarily decrease P effluxes from tropical forest ecosystems with conservative P cycling.  相似文献   

13.
Chronic atmospheric nitrogen deposition affects the cycling of carbon (C) and nitrogen (N) in forest ecosystems, and thereby alters the stable C isotopic abundance of plant and soil. Three successional stages, disturbed, rehabilitated and mature forests were studied for their responses to different nitrogen input levels. N-addition manipulative experiments were conducted at low, medium and high N levels. To study the responses of C cycling to N addition, the C concentration and 13C natural abundances for leaf, litter and soil were measured. Labile organic carbon fractions in mineral soils were measured to quantify the dynamics of soil organic C (SOC). Results showed that three-year continuous N addition did not significantly increase foliar C and N concentration, but decreased C/N ratio and enriched 13C in N-rich forests. In addition, N addition significantly decreased microbial biomass C, and increased water soluble organic C in surface soils of N-rich forests. This study suggests that N addition enhances the water consumption per unit C assimilation of dominant plant species, restricts SOC turnover in N-poor forests at early and medium successional stages (thus favored SOC sequestration), and vice versa for N-rich mature forests.  相似文献   

14.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

15.
模拟氮沉降增加对南亚热带主要森林土壤动物的早期影响   总被引:6,自引:0,他引:6  
对模拟氮沉降增加条件下3种南亚热地带代表性森林(季风常绿阔叶林、针阔混交林和马尾松纯林)内土壤动物群落的早期响应特征进行了比较研究.试验采用模拟的方法,人为构建了一个氮沉降增加梯度系列,即对照、低氮处理(50kg·hm-2·yr-1)、中氮处理(100kg·hm-2·yr-1)和高氮处理(150kg·hm-2·yr-1).结果表明,不同林分对氮沉降增加的响应不同;季风林与针叶林表现了两种截然相反的变化趋势,前者反映的是负向效应,土壤动物的3项指标均明显下降,而后者则反映出明显的正向效应,使得针叶林土壤动物的各项指标达到混交林,甚至季风林的水平;氮沉降增加对混交林则没有表现出明显的作用.不同氮沉降增加水平所产生的效应也不完全相同.在季风林内,参比对照,中氮处理往往表现出显著的负向效应(P<0.05),而低氮处理反应不明显;在针叶林内,氮处理的正向效应随着处理的加强而持续上升,尤其是对于土壤动物类群数指标,这种持续性均达到了显著性水平(P<0.05).可以认为,这些结果反映了森林生态系统对氮饱和的响应机制.  相似文献   

16.
Emissions of nitrous oxide (N2O) from the soil following simulated nitrogen (N) deposition in a disturbed (pine), a rehabilitated (pine and broadleaf mixed) and a mature (monsoon evergreen broadleaf) tropical forest in southern China were studied. The following hypotheses were tested: (1) addition of N will increase soil N2O emission in tropical forests; and (2) any observed increase will be more pronounced in the mature forest than in the disturbed or rehabilitated forest due to the relatively high initial soil N concentration in the mature forest. The experiment was designed with four N treatment levels (three replicates; 0, 50, 100, 150 kg N ha−1 year−1 for C (Control), LN (Low-N), MN (Medium-N), and HN (High-N) treatment, respectively) in the mature forest, but only three levels in the disturbed and rehabilitated forests (C, LN and MN). Between October 2005 to September 2006, soil N2O flux was measured using static chamber and gas chromatography methodology. Nitrogen had been applied previously to the plots since July 2003 and continued during soil N2O flux measurement period. The annual mean rates of soil N2O emission in the C plots were 24.1 ± 1.5, 26.2 ± 1.4, and 29.3 ± 1.6 μg N2O–N m−2 h−1 in the disturbed, rehabilitated and mature forest, respectively. There was a significant increase in soil N2O emission following N additions in the mature forest (38%, 41%, and 58% when compared to the C plots for the LN, MN, and HN plots, respectively). In the disturbed forest a significant increase (35%) was observed in the MN plots, but not in the LN plots. The rehabilitated forest showed no significant response to N additions. Increases in soil N2O emission occurred primarily in the cool-dry season (November, December and January). Our results suggest that the response of soil N2O emission to N deposition in tropical forests in southern China may vary depending on the soil N status and land-use history of the forest.  相似文献   

17.
Successional changes in belowground ectomycorrhizal fungal (EMF) communities have been observed with increasing forest stand age; however, mechanisms behind this change remain unclear. It has been hypothesized that declines of inorganic nitrogen (N) and increases of organic N influence changes in EMF taxa over forest development. In a post-wildfire chronosequence of six jack pine (Pinus banksiana) stands ranging in age from 5 to 56 years, we investigated EMF community composition and compared shifts in taxa with detailed soluble inorganic and organic N data. Taxa were identified by internal transcribed spacer rDNA sequencing, and changes in community composition evaluated with non-metric multi-dimensional scaling (NMDS). Dissimilarities in the community data were tested for correlations with N variables. We observed a successional shift along NMDS axis 1 from such taxa as Suillus brevipes and Thelephora terrestris in sites age 5 and 11 to species of Cortinarius and Russula, among others, in the four older sites. This change was positively correlated with soluble organic N (SON) (r 2 = 0.902, P = 0.033) and free amino-acid N (r 2 = 0.945, P = 0.021), but not inorganic N. Overall, our results show a successional shift of EMF communities occurring between stand initiation and canopy closure without a change in species of the dominant plant–host, and associated with SON and free amino-acid N in soil. It is uncertain whether EMF taxa are responding to these organic N forms directly, affecting their availability, or are ultimately responding to changes in other site variables, such as belowground productivity.  相似文献   

18.
The mixture of other broadleaf species into beech forests in Central Europe leads to an increase of tree species diversity, which may alter soil biochemical processes. This study was aimed at 1) assessing differences in gross rates of soil N cycling among deciduous stands of different beech (Fagus sylvatica L.) abundance in a limestone area, 2) analyzing the relationships between gross rates of soil N cycling and forest stand N cycling, and 3) quantifying N2O emission and determining its relationship with gross rates of soil N cycling. We used 15N pool dilution techniques for soil N transformation measurement and chamber method for N2O flux measurement. Gross rates of mineral N production in the 0–5 cm mineral soil increased across stands of decreasing beech abundance and increasing soil clay content. These rates were correlated with microbial biomass which, in turn, was influenced by substrate quantity, quality and soil fertility. Leaf litter-N, C:N ratio and base saturation in the mineral soil increased with decreasing beech abundance. Soil mineral N production and assimilation by microbes were tightly coupled, resulting in low N2O emissions. Annual N2O emissions were largely contributed by the freeze-thaw event emissions, which were correlated with the amount of soil microbial biomass. Our results suggest that soil N availability may increase through the mixture of broadleaf species into beech forests.  相似文献   

19.

Background and Aims

Phosphorus (P) is commonly one of most limiting nutrients in tropical and subtropical forests, but whether P limitation would be exacerbated during forest succession remains unclear.

Methods

Soil phosphatase activity is often used as an indicator of P limitation. Here we examined soil acid phosphatase activity (APA) underneath tree species in pine forest (PF), mixed pine and broadleaf forest (MF) and monsoon evergreen broadleaf forest (MEBF) which represented the early, middle and late successional stages of subtropical forests in China, respectively. We also analyzed other indicators of P status (soil available P and N and P stoichiometry of the tree species).

Results

APA or APA per unit soil organic carbon under tree species was relatively low in the early successional forest. Different from PF and MF, soil available P beneath the tree species was lower than in the bulk soils in MEBF. Soil APA was closely related to N:P ratios of tree species across all three forests.

Conclusions

Our results imply that P limitation increases during forest succession at our site. The dominant tree species with low soil APAs in MEBF are likely more P-limited than other tree species.  相似文献   

20.
There is increasing concern over the impact of atmospheric nitrogen (N) deposition on forest ecosystems in the tropical and subtropical areas. In this study, we quantified atmospheric N deposition and revealed current plant and soil N status in 14 forests along a 150 km urban to rural transect in southern China, with an emphasis on examining whether foliar δ15N can be used as an indicator of N saturation. Bulk deposition ranged from 16.2 to 38.2 kg N ha?1 yr?1, while the throughfall covered a larger range of 11.7–65.1 kg N ha?1 yr?1. Foliar N concentration, NO3? leaching to stream, and soil NO3? concentration were low and NO3? production was negligible in some rural forests, indicating that primary production in these forests may be limited by N supply. But all these N variables were enhanced in suburban and urban forests. Across the study transect, throughfall N input was correlated positively with soil nitrification and NO3? leaching to stream, and negatively with pH values in soil and stream water. Foliar δ15N was between ?6.6‰ and 0.7‰, and was negatively correlated with soil NO3? concentration and NO3? leaching to stream across the entire transect, demonstrating that an increased N supply does not necessarily increase forest δ15N values. We proposed several potential mechanism that could contribute to the δ15N pattern, including (1) increased plant uptake of 15N‐depleted soil NO3?, (2) foliage uptake of 15N‐depleted NH4+, (3) increased utilization of soil inorganic N relative to dissolved organic N, and (4) increased fractionation during plant N uptake under higher soil N availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号