首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The South African abalone (Haliotis midae) is a gastropod mollusc of economic importance. In recent years natural populations have come under considerable pressure due to overharvesting and ecological shifts. The spatial genetic structure of H. midae has been determined; however there has not been a temporal assessment of abalone population dynamics around the South African coast. Using a population genomics approach this study aimed to assess fluctuations in genetic diversity among wild and cultured South African abalone populations through time and space. Various estimates of genetic diversity and population differentiation were calculated using EST-derived SNP markers. All populations had comparable levels of genetic diversity and the long-term effective population size appears to be sufficiently large for the wild populations, despite evidence of recent bottlenecks. Population differentiation was for the most part geographically correlated, with spatial genetic structure maintained across temporal samples. Significant genetic differentiation was, however, detected among temporal samples taken from the same locality. There was evidence for comparatively small short-term effective population sizes that could explain large changes in allele frequencies due to stochastic effects. Temporal heterogeneity could also be explained by changes in selection pressures over time. H. midae populations could, therefore, be more dynamic than previously estimated and this could have implications for effective conservation and fisheries management.  相似文献   

2.
The African sugarcane stalk borer, Eldona saccharina Walker (Lepidoptera: Pyralidae), is widely distributed throughout sub-Saharan Africa and is an important insect pest of maize and sugarcane. The insect shows significant variation in behaviour, host plant and natural enemy guild in different regions. Several attempts to redistribute the natural enemies of E. saccharina from West Africa to South Africa were unsuccessful. The significant behavioural, host plant and natural enemy variations as well as failures of biocontrol attempts evoked a hypothesis of genetic diversification. To evaluate this hypothesis a molecular analysis was conducted on geographically isolated populations of E. saccharina from East, North, South and West Africa, using the cytochrome c oxidase subunit I (COI) region of the mitochondrial genome. The results revealed that E. saccharina populations are separated into four major units corresponding to the West Africa, Rift Valley, South/East Africa and southern African populations. Mitochondrial DNA divergence among the four populations ranged from 1% to 4.98%. To examine the impact of the observed genetic variation on the fertility of inter-population crosses, a mating experiment was conducted between the Rift valley and South African population to produce an F1 generation, and these were backcrossed with the South African parent population. Fertility of eggs produced by the F1/parent population cross was significantly reduced when compared to fertility of the "true" South African line, and the F1/F1 cross. The contributions of the observed genetic differences and inter population incompatibility for the failure of previous biocontrol attempts are discussed and recommendations on future biocontrol practices are given.  相似文献   

3.
Many peninsulas in the temperate zone played an important role as refugia of various flora and fauna, and the southern Korean Peninsula also served as a refugium for many small mammals in East Asia during the Pleistocene. The Asian lesser white-toothed shrew, Crocidura shantungensis, is a widely distributed species in East Asia, and is an appropriate model organism for exploring the role of the Korean Peninsula as a refugium of small mammals. Here, we investigated phylogenetic relationships and genetic diversity based on the entire sequence of the mitochondrial cytochrome b gene (1140 bp). A Bayesian tree for 98 haplotypes detected in 228 C. shantungensis specimens from East Asia revealed the presence of three major groups with at least 5 subgroups. Most haplotypes were distributed according to their geographic proximity. Pairwise FST’s and analysis of molecular variance (AMOVA) revealed a high degree of genetic differentiation and variance among regions as well as among populations within region, implying little gene flow among local populations. Genetic evidence from South Korean islands, Jeju-do Island of South Korea, and Taiwan leads us to reject the hypothesis of recent population expansion. We observed unique island-type genetic characteristics consistent with geographic isolation and resultant genetic drift. Phylogeographic inference, together with estimates of genetic differentiation and diversity, suggest that the southern most part the Korean Peninsula, including offshore islands, played an important role as a refugium for C. shantungensis during the Pleistocene. However, the presence of several refugia on the mainland of northeast Asia is also proposed.  相似文献   

4.
We conducted RAPD analyses at multiple spatial scales to contribute to the conservation and future restoration of New Zealand's seagrass, Zostera muelleri Irmisch ex Asch. (Zosteraceae). Initially we focused on fine-scale genetic variation within two estuaries on the North Island, one on the East coast the other on the West coast. Within each estuary individuals were genetically similar, however, there was clear genetic separation between the two sites (genetic distance D = 0.2965). Genetic variation within a sampling location (m scale) was similar to that observed among sampling locations (km scale) within a site (21% and 28%, respectively) and smaller than that observed between sites (51%). We then expanded our sampling to include a further six populations distributed across almost the entire latitudinal (ca. 15°) gradient of the North and South Islands. At this scale genetic differences were closely correlated with coastal currents. There was a clear separation between North Island and South Island populations and further separation between the East and West coast populations of each Island. Sites located along the same section of coastline were more genetically similar than those from the opposite coast and other Island. Genetic similarity was highest within each of the sites, indicating a low degree of gene flow between populations. We recommend that any future restoration and conservation projects use only locally eco-sourced materials for population augmentations.  相似文献   

5.
In the present study, five loci (mitochondrial and nuclear) were sequenced to determine the genetic diversity, population structure, and demographic history of populations of the yellowtail snapper, Ocyurus chrysurus, found along the coast of the western South Atlantic. O. chrysurus is a lutjanid species that is commonly associated with coral reefs and exhibits an ample geographic distribution, and it can therefore be considered a good model for the investigation of phylogeographic patterns and genetic connectivity in marine environments. The results reflected a marked congruence between the mitochondrial and nuclear markers as well as intense gene flow among the analyzed populations, which represent a single genetic stock along the entire coast of Brazil between the states of Pará and Espírito Santo. Our data also showed high levels of genetic diversity in the species (mainly mtDNA), as well a major historic population expansion, which most likely coincided with the sea level oscillations at the end of the Pleistocene. In addition, this species is intensively exploited by commercial fisheries, and data on the genetic structure of its populations will be essential for the development of effective conservation and management plans.  相似文献   

6.
We report the isolation and characterization of 11 polymorphic microsatellite loci in the South African abalone Haliotis midae. These loci showed a range of five to 21 alleles per locus and observed heterozygosities ranging from 0.14 to 0.93 in a wild population of 32 individuals. All loci except four conformed to Hardy–Weinberg expectations and did not show linkage disequilibrium. The polymorphism exhibited at these loci indicate that they would be useful in determining levels of genetic variability in natural and commercial Haliotis midae populations as well as in parentage and Quantitative Trait Loci (QTL) analysis in hatchery reared abalone.  相似文献   

7.
The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata.  相似文献   

8.
Genomewide analysis of genetic divergence is critically important in understanding the genetic processes of allopatric speciation. We sequenced RAD tags of 131 Asian seabass individuals of six populations from South‐East Asia and Australia/Papua New Guinea. Using 32 433 SNPs, we examined the genetic diversity and patterns of population differentiation across all the populations. We found significant evidence of genetic heterogeneity between South‐East Asian and Australian/Papua New Guinean populations. The Australian/Papua New Guinean populations showed a rather lower level of genetic diversity. FST and principal components analysis revealed striking divergence between South‐East Asian and Australian/Papua New Guinean populations. Interestingly, no evidence of contemporary gene flow was observed. The demographic history was further tested based on the folded joint site frequency spectrum. The scenario of ancient migration with historical population size changes was suggested to be the best fit model to explain the genetic divergence of Asian seabass between South‐East Asia and Australia/Papua New Guinea. This scenario also revealed that Australian/Papua New Guinean populations were founded by ancestors from South‐East Asia during mid‐Pleistocene and were completely isolated from the ancestral population after the last glacial retreat. We also detected footprints of local selection, which might be related to differential ecological adaptation. The ancient gene flow was examined and deemed likely insufficient to counteract the genetic differentiation caused by genetic drift. The observed genomic pattern of divergence conflicted with the ‘genomic islands’ scenario. Altogether, Asian seabass have likely been evolving towards allopatric speciation since the split from the ancestral population during mid‐Pleistocene.  相似文献   

9.
The Indo‐Australian archipelago (IAA) supports the world's highest diversity of marine fish, invertebrates and reptiles. Many of the marine fish and invertebrates show congruent phylogeographic patterns, supporting a view that the region's complex geo‐climatic history has played an important role in generating its exceptional biodiversity. Here, we examine population genetic structure of the viviparous sea snake, Hydrophis curtus, to assess how past and present barriers to gene flow in the IAA have contributed to genetic and species diversity in a fully marine reptile. Mitochondrial and anonymous nuclear sequences and ten microsatellite loci were used to identify patterns of historical genetic structure and population expansion, reconstruct dated genealogies and assess levels of recent gene flow. These markers revealed strong concordant geographic structure within H. curtus with a prominent genetic break between populations broadly distributed in the Indian Ocean and the West Pacific. These populations were estimated to have diverged in the late Pliocene or early Pleistocene, and microsatellite admixture analyses suggested limited recent gene flow between them despite the current lack of barriers to dispersal, indicating possible cryptic species. Subsequent divergence in the mid–late Pleistocene was detected within the West Pacific clade among the populations in the Phuket‐Thailand region, South‐East Asia and Australia, and two of these populations also showed genetic signals of recent range expansions. Our results show that climatic fluctuations during the Plio‐Pleistocene generated high levels of cryptic genetic diversity in H. curtus, and add to similar findings for diverse other marine groups in the IAA.  相似文献   

10.
We sequenced 1077 bp of the mitochondrial cytochrome b gene and 511 bp of the nuclear Apolipoprotein B gene in bicoloured shrew (Crocidura leucodon, Soricidae) populations ranging from France to Georgia. The aims of the study were to identify the main genetic clades within this species and the influence of Pleistocene climatic variations on the respective clades. The mitochondrial analyses revealed a European clade distributed from France eastwards to north-western Turkey and a Near East clade distributed from Georgia to Romania; the two clades separated during the Middle Pleistocene. We clearly identified a population expansion after a bottleneck for the European clade based on mitochondrial and nuclear sequencing data; this expansion was not observed for the eastern clade. We hypothesize that the western population was confined to a small Italo-Balkanic refugium, whereas the eastern population subsisted in several refugia along the southern coast of the Black Sea.  相似文献   

11.
The “East Pacific Barrier” has been recognized as the World’s largest marine biogeographic barrier. Munida gregaria is the only species of its family with transpacific populations; however, it still remains to be elucidated whether these two distantly located populations belong to the same species. In this study, we investigated the genetic cohesion of M. gregaria across the East Pacific Barrier by analyzing mitochondrial markers. Cytochrome oxidase subunit I and NADH dehydrogenase subunit 1 genes were sequenced for individuals from different areas, i.e., the southeast Pacific, the southern tip of South America, the southwest Atlantic, and the southwest Pacific. A median-joining network, pairwise F STs, genetic diversity statistics, and neutrality tests were computed. Our results, i.e., the absence of different haplogroups on both sides of the East Pacific Barrier and existence of shared haplotypes, showed that populations on both sides of this barrier belong to the same species. At a population genetic level, our results suggest that individuals from both regions have been connected, since although some differentiation was found between the southern tip of South America and the southwest Pacific, the southeast Pacific and southwest Atlantic showed no signs of differentiation from the southwest Pacific. In addition, our results provided evidence of a population expansion in southern South America during the Pleistocene. The role of Pleistocene glaciations and the Antarctic Circumpolar Current in shaping the distribution of sub-Antarctic marine invertebrates is discussed.  相似文献   

12.
Phylogenetic relationships among Malaysia’s long-tailed macaques have yet to be established, despite abundant genetic studies of the species worldwide. The aims of this study are to examine the phylogenetic relationships of Macaca fascicularis in Malaysia and to test its classification as a morphological subspecies. A total of 25 genetic samples of M. fascicularis yielding 383 bp of Cytochrome b (Cyt b) sequences were used in phylogenetic analysis along with one sample each of M. nemestrina and M. arctoides used as outgroups. Sequence character analysis reveals that Cyt b locus is a highly conserved region with only 23% parsimony informative character detected among ingroups. Further analysis indicates a clear separation between populations originating from different regions; the Malay Peninsula versus Borneo Insular, the East Coast versus West Coast of the Malay Peninsula, and the island versus mainland Malay Peninsula populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo’s population was distinguished from Peninsula’s population (99% and 100% bootstrap value in NJ and MP respectively and 1.00 posterior probability in Bayesian trees). The East coast population was separated from other Peninsula populations (64% in NJ, 66% in MP and 0.53 posterior probability in Bayesian). West coast populations were divided into 2 clades: the North-South (47%/54% in NJ, 26/26% in MP and 1.00/0.80 posterior probability in Bayesian) and Island-Mainland (93% in NJ, 90% in MP and 1.00 posterior probability in Bayesian). The results confirm the previous morphological assignment of 2 subspecies, M. f. fascicularis and M. f. argentimembris, in the Malay Peninsula. These populations should be treated as separate genetic entities in order to conserve the genetic diversity of Malaysia’s M. fascicularis. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia.  相似文献   

13.
The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today.  相似文献   

14.
We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network construction with recombining chromosomal segments. Here, a subARG is constructed independently for each of five gene-free regions across the X chromosome, and the results are aggregated across them. For PCA, MDS and ancestry inference with STRUCTURE, the subARG is processed to obtain feature vectors of samples and pairwise distances between samples. The observed population structure, estimated from the five short X chromosomal segments, supports genome-wide frequency-based analyses: African populations show higher genetic diversity, and the general trend of shared variation is seen across the globe from Africa through Middle East, Europe, Central Asia, Southeast Asia, and East Asia in broad patterns. The recombinational analysis was also compared with established methods based on SNPs and haplotypes. For haplotypes, we also employed a fixed-length approach based on information-content optimization. Our recombinational analysis suggested a southern migration route out of Africa, and it also supports a single, rapid human expansion from Africa to East Asia through South Asia.  相似文献   

15.
ABSTRACT: BACKGROUND: The Chilean shoreline, a nearly strait line of coast expanding across 35 latitudinal degrees, represents an interesting region to assess historical processes using phylogeographic analyses. Stretching along the temperate section of the East Pacific margin, the region is characterized by intense geologic activity and has experienced drastic geomorphological transformations linked to eustatic and isostatic changes during the Quaternary. In this study, we used two molecular markers to evaluate the existence of phylogeographic discontinuities and detect the genetic footprints of Pleistocene glaciations among Patagonian populations of Mazzaella laminarioides, a low-dispersal benthic intertidal red seaweed that inhabits along ~3,700 km of the Chilean coastal rocky shore. RESULTS: Three main genetic lineages were found within M. laminarioides. They are distributed along the Chilean coast in strict parapatry. The deep divergence among lineages suggests that they could be considered putative genetic sibling species. Unexpectedly, genetic breaks were not strictly concordant with the biogeographic breaks described in the region. A Northern lineage was restricted to a broad transition zone located between 30degreesS and 33degreesS and showed signals of a recent bottleneck. The reduction of population size could be related to warm events linked to El Nino Southern Oscillation, which is known to cause massive seaweed mortality in this region. To the south, we propose that transient habitat discontinuities driven by episodic tectonic uplifting of the shoreline around the Arauco region (37degreesS-38degreesS); one of the most active forearc-basins in the South East Pacific; could be at the origin of the Central/South genetic break. The large beaches, located around 38degreesS, are likely to contribute to the lineages' integrity by limiting present gene flow. Finally, the Southern lineage, occupies an area affected by ice-cover during the last glaciations. Phylogeny suggested it is a derived clade and demographic analyses showed the lineage has a typical signature of postglacial recolonization from a northern glacial refugium area. CONCLUSIONS: Even if environmental adaptation could have strengthened divergence among lineages in M. laminarioides, low dispersal capacity and small population size are sufficient to generate phylogeographic discontinuities determined by genetic drift alone. Interestingly, our results confirm that seaweed population connectivity over large geographic scales does not rely only on dispersal capacity but also seem to depend highly on substratum availability and population density of the receiving locality.  相似文献   

16.
Portunus trituberculatus is a commercially important fishery species. In this study, intraspecific variation was examined by using mitochondrial DNA 16S rRNA gene in 213 individual crabs sampled from six localities along the coast of the East China Sea. Twenty-two polymorphic sites defined 25 distinct haplotypes, revealing a moderately high haplotype diversity and relatively low sequence divergence among the six localities. An excess of within population unique haplotypes at most sample locations were detected, which might influence genetic structure of the swimming crab populations. Neither neighbor-joining tree nor minimum spanning network (MSN) based on the haplotype data indicated distinct patterns of phylogeographic structure among the 25 haplotypes. Analyses of molecular variance (AMOVA) and FST statistics supported the hypothesis that population samples from the East China Sea were genetically nonhomogenous, indicating that gene flow might be restricted across those regions, despite the high potential of dispersal. In addition, tests of neutral evolution and analysis of mismatch distribution suggested that P. trituberculatus might have undergone a population expansion, possibly within the last 127,000 and 429,000 years. Our study unraveled the extant population genetic structure of the P. trituberculatus, and addressed the related fishery management issues including artificial breeding, fishery stock identification and conservation.  相似文献   

17.
A total of 350 samples were analyzed to estimate zebu gene proportions into two different taurine cattle breeds of Burkina Faso (Lobi and N’Dama) using 38 microsatellites and various statistical methodologies. West African and East African zebu samples were sequentially used as reference parental populations. Furthermore, N’Dama cattle from Congo, the composite South African Bonsmara cattle breed and a pool of European cattle were used successively as second parental populations. Independently of the methodology applied: (a) the use of West African zebu samples gave higher admixture coefficients than the East African zebu; (b) the higher zebu proportions were estimated when the European cattle was used as parental population 2; and (c) the use of the N’Dama population from Congo as parental population 2 gave the more consistent zebu proportion estimates for both the Lobi and the N’Dama breeds. In any case, the zebu admixture proportions estimated were not negligible and were always higher in the N’Dama cattle than in the Lobi cattle of Burkina Faso. This suggested that the introgression of Sahelian zebu genes into the taurine cattle of Southern West Africa can follow a complex pattern that can depend on local agro-ecological features. The current research pointed out that the estimation of admixture coefficients is highly dependent on both the assumptions underlying the methodologies applied and the selection of parental populations. Our analyses suggest that either too high or nil genetic identity between the parental and the expectedly derived populations must be avoided.  相似文献   

18.
The endangered Black-faced Spoonbill Platalea minor has experienced drastic reductions in population size, geographic distribution, and habitat availability throughout East Asia. In the present study, we examined population genetic structure and genetic diversity of Black-faced Spoonbills inhabiting five sites off the west coast of South Korea encompassing a few of its major breeding sites. Ten microsatellite loci and the mitochondrial sequence were used to assess patterns of genetic variation based on 63 individuals. Three ND2 haplotypes were found among 61 individuals; the remaining two were identified as Eurasian Spoonbills, revealing an unexpected hybridization between these two species having different ecological niches in South Korea—the Eurasian Spoonbill overwinters in inland areas, whereas the Black-faced Spoonbill inhabits coastal areas during the summer. Analyses of microsatellite variation revealed no discrete population structure among the five breeding sites but very weak genetic differentiation among geographically distant regions. Assignment tests identified several possible migrants among sites. Our findings suggested that Black-faced Spoonbills from the five breeding sites could be managed as a single population and highlighted the importance of conserving the populations from Maedo, Suhaam, and Namdong reservoir, which are geographically close and have retained high levels of genetic diversity and large populations.  相似文献   

19.
Despite its key location for population movements out of and back into Africa, Yemen has not yet been sampled on a regional level for an investigation of sub-Saharan, West Eurasian, and South Asian genetic contributions. In this study, we present mitochondrial DNA (mtDNA) data for regionally distinct Yemeni populations that reveal different distributions of mtDNA lineages. An extensive database of mtDNA sequences from North and East African, Middle Eastern and Indian populations was analyzed to provide a context for the regional Yemeni mtDNA datasets. The groups of western Yemen appear to be most closely related to Middle Eastern and North African populations, while the eastern Yemeni population from Hadramawt is most closely related to East Africa. Furthermore, haplotype matches with Africa are almost exclusively confined to West Eurasian R0a haplogroup in southwestern Yemen, although more sub-Saharan L-type matches appear in more northern Yemeni populations. In fact, Yemeni populations have the highest frequency of R0a haplotypes detected to date, thus Yemen or southern Arabia may be the site of the initial expansion of this haplogroup. Whereas two variants of the sub-Saharan haplogroup M1 were detected only in southwestern Yemen close to the Bab el-Mandeb Strait, different non-African M haplotypes were detected at low frequencies (approximately 2%) in western parts of the country and at a higher frequency (7.5%) in the Hadramawt. We conclude that the Yemeni gene pool is highly stratified both regionally and temporally and that it has received West Eurasian, Northeast African, and South Asian gene flow.  相似文献   

20.
《Aquatic Botany》2005,81(2):175-188
Comprehensive information of mangrove genetic resources is requisite for developing strategies for their effective conservation and sustainable use. Genetic diversity within and among populations of a widespread viviparous mangrove Ceriops decandra was determined using inter-simple sequence repeat (ISSR). Ten natural populations were collected from Malay Peninsula and North Australia. At the species level, high genetic variation was detected (P = 72%, HE = 0.253, and I = 0.379). The estimate of GST was 0.882, indicating a high level of genetic differentiation among populations. When populations were grouped according to geographic regions, i.e., East Malaya, West Malaya, Southmost Malaya, and North Australia, AMOVA suggested that most of the total variation (87%) was accounted for by differentiation between regions, with only 4% accounting for variation among populations within regions, and a further 9% partitioned among individuals within a population. A UPGMA dendrogram based on genetic distance revealed a deep split between populations from the eastern Indian Ocean and all others from the western Pacific Ocean, which may result from the historical lowering of sea level at these regions during the recent Pleistocene glaciations. An understanding of the genetic structure of C. decandra provides insight for the conservation and management of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号